INFLUENCE OF LOW-FREQUENCY MAGNETIC FIELD ON CHARACTERISTICS OF PHYSIOLOGICAL TREMOR
Cite this article as:
Pavlova O. N., Tupitsyn А. N., Pavlov A. N. INFLUENCE OF LOW-FREQUENCY MAGNETIC FIELD ON CHARACTERISTICS OF PHYSIOLOGICAL TREMOR. Izvestiya VUZ. Applied Nonlinear Dynamics, 2006, vol. 14, iss. 6, pp. 75-87. DOI: https://doi.org/10.18500/0869-6632-2006-14-6-75-87
Based on the wavelet-analysis technique, a study is performed of how characteristics of physiological tremor are changed at the influence of a weak low-frequency magnetic field. Different approaches to analyze the structure of experimental data are considered using both, real and complex wavelet-transform basic functions. It is shown that magnetic field has an effect on a local regularity of analyzed processes and on their energy characteristics.
1. Gandhi O.P., Kang G., Wu D., Lazzi G. Currents induced in anatomic models of the human for uniform and nonuniform power frequency magnetic fields // Bioelectromagnetics. 2001. Vol. 22(2). P. 112.
2. Gauger J.R. Household appliance magnetic field survey // IEEE Transactions on Power apparatus and systems. 1985. Vol. 104. P. 9.
3. Beuter A., Glass L., Mackey M.C., Titcombe M.S. Nonlinear Dynamics in Physiology and Medicine (Springer-Verlag, New York, 2003).
4. Cook C.M., Thomas A.W., Prato F.S. Resting EEG is affected by exposure to a pulsed ELF magnetic field // Bioelectromagnetics. 2004. Vol. 25(3). P. 196.
5. Thomas A.W., Drost D.J., Prato F.S. Human subjects exposed to a specific pulsed (200 microT) magnetic field: effects on normal standing balance // Neurosci. Lett. 2001. Vol. 297. P. 121.
6. Wachs H., Boshes B. Tremor studies in normals and in Parkinsonism // Arch. Neurol. 1961. Vol. 4. P. 66.
7. Elble R.J., Koller W.C. Tremor. The John Hopkins University press, London, 1990.
8. McAuley J.H., Marsden C.D. Physiological and pathological tremors and rhythmic central motor control // Brain. 2000. Vol. 123. P. 1545.
9. Legros A., Beuter A. Effect of a low intensity magnetic field on human behavior // Bioelectromagnetics. 2006 (in press).
10. Grossman A., Morlet J. Decomposition of hardy functions into square integrable wavelets of constant shape // S.I.A.M. J. Math. Anal. 1984. Vol. 15. P. 723; Daubechies I. Ten lectures on Wavelets. Philadelphie, S.I.A.M., 1992; Meyer Y. (ed.) Wavelets and Applications. Springer–Verlag, Berlin, 1992.
11. Chui C.K. An Introduction to Wavelets. New York, Academic Press, 1992; Столниц Э., ДеРоуз Т., Салезин Д. Вейвлеты в компьютерной графике. Ижевск. НИЦ «Регулярная и хаотическая динамика», 2002; Короновский А.А., Храмов А.Е. Непрерывный вейвлетный анализ. Саратов, изд-во ГосУНЦ «Колледж», 2002.
12. Janson N.B., Pavlov A.N., Anishchenko V.S. Global reconstruction: application to biological data and secure communication // Invited chapter in book Chaos and its reconstruction / Eds. G.Gouesbet, S.Meunier-Guttin-Cluzel. Novascience publishers, New York, 2003. P. 287.
13. Mallat S.G. A Wavelet Tour of Signal Processing. San Diego, Academic Press, 1998.
14. Muzy J.F., Bacry E., Arneodo A. The multifractal formalism revisited with wavelets // Int. J. Bifurcation and Chaos. 1994. Vol. 4. P. 245.
15. Muzy J.F., Bacry E., Arneodo A. Multifractal formalism for fractal signals: the structure-function approach versus the wavelet-transform modulus-maxima method // Phys. Rev. E. 1993. Vol. 47. P. 875; Ivanov P.Ch., Nunes Amaral L.A., Goldberger A.L., Havlin S., Rosenblum M.G., Struzik Z.R., Stanley H.E. Multifractality in human heartbeat dynamics // Nature. 1999. Vol. 399. P. 461; Павлов А.Н., Зиганшин А.Р., Анищенко В.С. Мультифрактальный анализ временных рядов // Изв. вузов. Прикладная нелинейная динамика. 2001. T. 9. No 3. C. 39; Pavlov A.N., Sosnovtseva O.V., Ziganshin A.R., Holstein-Rathlou N.-H., Mosekilde E. Multiscality in the dynamics of coupled chaotic systems// Physica A. 2002. Vol. 316, P. 233.
16. Астафьева Н.М. Вейвлет-анализ: основы теории и примеры применения //Успехи физических наук. 1996. Т. 166. No 11. С. 1145.
BibTeX
author = {O. N. Pavlova and А. N. Tupitsyn and A. N. Pavlov},
title = {INFLUENCE OF LOW-FREQUENCY MAGNETIC FIELD ON CHARACTERISTICS OF PHYSIOLOGICAL TREMOR},
year = {2006},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {14},number = {6},
url = {https://old-andjournal.sgu.ru/en/articles/influence-of-low-frequency-magnetic-field-on-characteristics-of-physiological-tremor},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2006-14-6-75-87},pages = {75--87},issn = {0869-6632},
keywords = {-},
abstract = {Based on the wavelet-analysis technique, a study is performed of how characteristics of physiological tremor are changed at the influence of a weak low-frequency magnetic field. Different approaches to analyze the structure of experimental data are considered using both, real and complex wavelet-transform basic functions. It is shown that magnetic field has an effect on a local regularity of analyzed processes and on their energy characteristics. }}