INVESTIGATION OF STABILITY OF NONLINEAR NORMAL MODES IN ELECTRICAL LATTICES
Cite this article as:
Shcherbinin . А., Goncharov P. P., Chechin G. М. INVESTIGATION OF STABILITY OF NONLINEAR NORMAL MODES IN ELECTRICAL LATTICES. Izvestiya VUZ. Applied Nonlinear Dynamics, 2013, vol. 21, iss. 2, pp. 34-51. DOI: https://doi.org/10.18500/0869-6632-2013-21-2-34-51
The problems of existence and stability of the symmetry-induced nonlinear normal modes in the electric chain of non-linear capacitors, connected to each other with linear inductors (the model described in Physica D238 (2009) 1228) are investigated. For all modes of this type, the upper limit of the stability region (in amplitude of voltage oscillations on capacitors) as a function of the chain cell number were found. Asymptotic formulas were determined at cell number tends to infinity.
1. Trias E., Mazo J.J., Orlando T.P. Discrete breathers in nonlinear lattices: Experimental detection in a Josephson array // Physical Review Letters. 2000. Vol. 84. P.741.
2. Binder P., Abraimov D., Ustinov A.V., Flach S., Zolotaryuk Y. Observation of breathers in Josephson ladders//Physical Review Letters. 2000. Vol. 84. P. 745.
3. Sato M., Hubbard B.E., Sievers A.J., Ilic B., Czaplewski D.A., Craighead H.G. Observation of locked intrinsic localized vibrational modes in a micromechanical oscillator array//Physical Review Letters. 2003. Vol. 90. P. 1.
4. Sato M., Hubbard B.E., Sievers A.T. Nonlinear energy localization and its manipulation in micromechanical oscillator arrays//Reviews of Modern Physics. 2006. Vol. 78. P. 137.
5. Boechler N., Theocharis G., Job S., Kevrekidis P.G., Porter M.A., Daraio C. Discrete breathers in one-dimensional diatomic granular crystals//Physical Review Letters. 2010. Vol. 104. P. 244302-4.
6. Afshari E., Hajimiri A. Nonlinear transmission lines for pulse shaping in silicon // Journal of Solid-state Circuits. 2005. Vol. 40. P. 744.
7. Afshari E., Bhat H.S., Hajimiri A., Marsden J.E. Extremely wideband signal shaping using one- and two-dimensional nonuniform nonlinear transmission lines//Journal of Applied Physics. 2006. Vol. 99. P. 054901.
8. Bhat H.S., Afshari E. Nonlinear constructive interference in electrical lattices // Physical Review E. 2008. Vol. 77. P. 066602.
9. Bhat H. S., Osting B. The zone boundary mode in periodic nonlinear electrical lattices//Physica D. 2009. Vol. 238. P. 1228.
10. Budinsky N., Bountis T. Stability of nonlinear models and chaotic properties of 1D Fermi-Pasta-Ulam lattices//Physica D. 1983. Vol. 8. P. 445.
11. Sandusky K.W., Page J.B. Interrelation between stability of extended normal modes and the existence of intrinsic localized modes in nonlinear lattices with realistic potentials//Physical Review B. 1994. Vol. 50. P. 866.
12. Poggi P., Ruffo S. Exact solution in the FPU oscillator chain//Physica D. 1997. Vol. 103. P. 251.
13. Chechin G.M., Ryabov D.S. Stability of nonlinear normal modes in the FPU-β chain in the thermodynamic Limit//Physical Review E. 2012. Vol. 85. P. 056601.
14. Yoshimura K. Modulational instability of zone boundary mode in non-linear lattices: rigorous result//Physical Review E. 2004. Vol. 70. P. 1661.
15. Chechin G.M., Zhukov K.G. Stability analysis of dynamical regimes in nonlinear systems with discrete symmetries//Phys. Rev. E. 2006. Vol. 73. P. 36216.
16. Жуков К. Г., Чечин Г.М. Теоретико-групповые методы при анализе устойчивости динамических режимов в нелинейных системах с дискретной симметрией//Известия вузов. Прикладная нелинейная динамика. 2008. Т. 16, No 4. C. 147.
17. Chechin G.M., Novikova N.V., and Abramenko A.A. Bushes of vibrational modes for Fermi–Pasta–Ulam chains//Physica D. 2002. Vol. 166. P. 208.
18. Chechin G.M., Ryabov D.S., and Zhukov K.G. Stability of low dimensional bushes of vibrational modes in the Fermi–Pasta–Ulam chains//Physica D. 2005. Vol. 203. P. 121.
19. Безуглова Г.С., Гончаров П.П., Гуров Ю.В., Чечин Г.М. Дискретные бризеры в скалярных динамических моделях на плоской квадратной решетке//Изв. вузов. Прикладная нелинейная динамика. 2011. Т. 19, No 3. C. 89.
20. Bezuglova G.S., Chechin G.M., Goncharov P.P. Discrete breathers on symmetrydetermined invariant manifolds for scalar models on the plane square lattice//Physical Review E. 2011. Vol. 84. P. 036606.
21. Rosenberg R.M. The normal modes of nonlinear n-degree-of-freedom systems // J. Appl. Mech. 1962. Vol. 29. P. 7.
22. Rink B. Symmetric invariant manifolds in the Fermi–Pasta–Ulam lattice//Physica D. 2003. Vol. 175. P. 31.
23. Chechin G.M., Ryabov D.S., Sakhnenko V.P. Bushes of normal modes as exact excitations in nonlinear dynamical systems with discrete symmetry//Nonlinear phenomena research perspectives / Ed. by C. W. Wang. NY.: Nova Science Publishers, 2007. P. 225.
24. Bountis T., Chechin C.M., Sakhnenko V.P. Discrete symmetries and stability in Hamiltonian dynamics//International J. of Bifurc. Chaos. 2011. Vol. 21. P. 1539.
25. Chechin G.M., Sakhnenko V.P., Stokes H.T., Smith A.D., and Hatch D.M. Non-linear normal modes for systems with discrete symmetry//Int. J. Non-Linear Mech. 2000. Vol. 35. P. 497.
26. Сахненко В.П., Чечин Г.М. Симметрийные правила отбора в нелинейной динамике автономных систем//ДАН. 1993. Т. 330. С. 308.
27. Сахненко В.П., Чечин Г.М. Кусты мод и нормальные колебания для нелинейных динамических систем с дискретной симметрией//ДАН. 1994. Т. 338. С. 42.
28. Chechin G.M. and Sakhnenko V.P. Interaction between normal modes in nonlinear dynamical systems with discrete symmetry. Exact results//Physica D. 1998. Vol. 117. P. 43.
29. Петрашень М.И., Трифонов Е.Д. Применение теории групп в квантовой механике. М.: Наука, 1967.
30. Абрамовиц М., Стиган И. Справочник по специальным функциям с формулами, графиками и математическими таблицами. М.: Наука, 1979.
BibTeX
author = { S. А. Shcherbinin and P. P. Goncharov and G М. Chechin},
title = {INVESTIGATION OF STABILITY OF NONLINEAR NORMAL MODES IN ELECTRICAL LATTICES},
year = {2013},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {21},number = {2},
url = {https://old-andjournal.sgu.ru/en/articles/investigation-of-stability-of-nonlinear-normal-modes-in-electrical-lattices},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2013-21-2-34-51},pages = {34--51},issn = {0869-6632},
keywords = {nonlinear dynamics,lattice models,nonlinear normal modes,invariant manifolds,group-theoretical methods.},
abstract = {The problems of existence and stability of the symmetry-induced nonlinear normal modes in the electric chain of non-linear capacitors, connected to each other with linear inductors (the model described in Physica D238 (2009) 1228) are investigated. For all modes of this type, the upper limit of the stability region (in amplitude of voltage oscillations on capacitors) as a function of the chain cell number were found. Asymptotic formulas were determined at cell number tends to infinity. }}