MULTIPARAMETRICAL ANALYSIS BASED ON MELNIKOV CRITERION AND OPTIMAL CHAOS SUPPRESSION IN PERIODICALLY DRIVEN DYNAMIC SYSTEMS
Cite this article as:
Talagaev Y. V., Tarakanov А. F. MULTIPARAMETRICAL ANALYSIS BASED ON MELNIKOV CRITERION AND OPTIMAL CHAOS SUPPRESSION IN PERIODICALLY DRIVEN DYNAMIC SYSTEMS. Izvestiya VUZ. Applied Nonlinear Dynamics, 2011, vol. 19, iss. 4, pp. 77-90. DOI: https://doi.org/10.18500/0869-6632-2011-19-4-77-90
The results that illustrate the fruitfulness of the idea of optimal parametric correction for the analysis and optimization of the class of periodically driven chaotic systems are presented. Two problems that reveal the peculiarities of suppression of chaotic dynamics and present the method of regulation of the behavior of dissipative nonlinear oscillator were solved with the help of Melnikov criterion. The analytical results were compared to the solution of double-criteria problem that uses the conditions of Pontryagin maximum principle to find optimal parametric perturbations. The efficiency evaluations of various forms of parametric perturbations on the system found with the help of two independent methods correspond to each other.
1. Zhang H., Liu D., Wang Z. Controlling Chaos: Suppression, Synchronization and Chaotification. Series: Communications and Control Engineering. Springer, 2009.
2. Recent Progress in Controlling Chaos / M.A.F. Sanjuan and C. Grebogi, editors. Singapore: World Scientific, 2010.
3. Rega G., Lenci S., Thompson J.M.T. Controlling chaos: The OGY Method, Its Use in Mechanics, and an Alternative Unified Framework for Control of Non-regular Dynamics // In Nonlinear Dynamics and Chaos Advances and Perspectives / Ed. M. Thiel et al. Berlin: Springer–Verlag, 2010. P. 211.
4. Ott E., Grebogi C., Yorke J.A. Controlling chaos // Phys. Rev. Lett. 1990. Vol. 64, No 11. P. 1196.
5. Warncke J., Bauer M., Martienssen W. Multiparameter control of high-dimensional chaotic systems // Europhys. Lett. 1994. Vol. 25, No 5. P. 323.
6. Barreto E., Grebogi C. Multiparameter control of chaos // Phys. Rev. E. 1995. Vol. 54, No 4. P. 3553.
7. Pyragas K., Pyragas V. Delayed Feedback Control Techniques // Recent Progress in Controlling Chaos / M.A.F. Sanjuan and C. Grebogi, editors. Singapore: World Scientific, 2010. P. 103.
8. Lima R., Pettini M. Suppression of chaos by resonant parametric perturbation // Phys. Rev. A. 1990. Vol. 41. I. 2. P. 726.
9. Braiman Y., Goldhirsch I. Taming chaotic dynamics with weak periodic perturbations // Phys. Rev. Lett. 1991. Vol. 66. P. 2545.
10. Kivshar Y.S., Rodelsperger F., Benner H. Suppression of chaos by nonresonant parametric perturbation // Phys. Rev. E. 1994. Vol. 49, No 1. P. 319.
11. Belhaq M., Houssni M. Quasi-periodic oscillations, chaos and suppression of chaos in a nonlinear oscillator driven by parametric and external excitations // Nonlin. Dyn. 1999. Vol. 18. P. 1.
12. Schwalger T., Dzhanoev A., Loskutov A. May chaos always be suppressed by parametric perturbations? // Chaos. 2006. Vol. 16. P. 023109.
13. Гукенхеймер Дж., Холмс Ф. Нелинейные колебания, динамические системы и бифуркации векторных полей. Москва-Ижевск: Институт компьютерных исследований, 2002.
14. Лоскутов А.Ф. Динамический хаос. Системы классической механики // Успехи физических наук. 2007. Т. 177, No 9. С.980.
15. Кузнецов С.П. Динамический хаос (курс лекций). М.: Физматлит, 2001.
16. Chacon R. Suppression of chaos by selective resonant parametric perturbation // Phys. Rew. E. 1995. Vol. 51. P. 761.
17. Qu Z., Hu G., Yang G., Qin G. Phase effect in taming nonautonomous chaos by weak harmonic perturbations // Phys. Rev. Lett. 1995. Vol. 74. P. 1736.
18. Zambrano S., Allaria E., Brugioni S., Leyva I., Meucci R., Sanjuan M.A.F., Arecchi F.T. Numerical and experimental exploration of phase control of chaos // Chaos. 2006. Vol. 16. P. 013111.
19. Талагаев Ю.В., Тараканов А.Ф. Оптимальное подавление хаоса и переходные процессы в скорректированных многопараметрических колебательных системах // Изв. вузов. Прикладная нелинейная динамика. 2008. Т. 15, No 5. С. 100.
20. Gorelik V., Talagaev Y., Tarakanov А. Optimal Processes of Chaotic Uncertainty Correction. Proc. 18th IEEE International Conference on Control Applications, Part of 2009 IEEE Multi-conference on Systems and Control. July 8–10, 2009. Saint Petersburg, Russia. P. 878.
21. Афанасьев В.Н., Колмановский В.Б., Носов В.Р. Математическая теория конструирования систем управления (3-е изд.). М.: Высшая школа, 2003.
BibTeX
author = {Yu. V. Talagaev and А. F. Tarakanov },
title = {MULTIPARAMETRICAL ANALYSIS BASED ON MELNIKOV CRITERION AND OPTIMAL CHAOS SUPPRESSION IN PERIODICALLY DRIVEN DYNAMIC SYSTEMS},
year = {2011},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {19},number = {4},
url = {https://old-andjournal.sgu.ru/en/articles/multiparametrical-analysis-based-on-melnikov-criterion-and-optimal-chaos-suppression-in},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2011-19-4-77-90},pages = {77--90},issn = {0869-6632},
keywords = {Multiparametrical analysis,nonlinear oscillators,optimal chaos suppression,Melnikov criterion,maximum principle.},
abstract = {The results that illustrate the fruitfulness of the idea of optimal parametric correction for the analysis and optimization of the class of periodically driven chaotic systems are presented. Two problems that reveal the peculiarities of suppression of chaotic dynamics and present the method of regulation of the behavior of dissipative nonlinear oscillator were solved with the help of Melnikov criterion. The analytical results were compared to the solution of double-criteria problem that uses the conditions of Pontryagin maximum principle to find optimal parametric perturbations. The efficiency evaluations of various forms of parametric perturbations on the system found with the help of two independent methods correspond to each other. }}