NEW APPROACH TO MODELING OF NATURAL FLUVIAL OIL RESERVOIRS


Cite this article as:

Sidorenko V. V., Surtaev V. N., Khasanov М. . NEW APPROACH TO MODELING OF NATURAL FLUVIAL OIL RESERVOIRS. Izvestiya VUZ. Applied Nonlinear Dynamics, 2007, vol. 15, iss. 3, pp. 74-86. DOI: https://doi.org/10.18500/0869-6632-2007-15-3-74​-86


We discuss the conception of the adaptive modeling of the natural oil reservoirs. This conception is based on application of simple mathematical algorithms to imitate the physical processes, defining the reservoir structure. As an example the possibility of fluvial reservoir modeling by a cellular automata is considered.

Key words: 
-
DOI: 
10.18500/0869-6632-2007-15-3-74​-86
Literature

1. Хайн Н.Дж. Геология, разведка, бурение и добыча нефти. М.: Олимп-Бизнес, 2004. 752 с.

2. Krige D.G. A statistical approach to some basic mine valuation problems on the Witwatersrand // Journal of the Chemical, Metallurgical and Mining Society of South Africa. 1951. Vol. 52. P. 119.

3. Wietzerbin L., Mallet J.L. Parametrization of complexe 3D heterogeneities: a new CAD approach // SPE 26423-PA. 1993.

4. Deutsch C.V., Wang L. Hierarchical object-based geostatistical modeling of fluvial reservoirs // SPE 36514. 1996.

5. Shmaryan L.E., Deutsch C.V. Object-based modeling of fluvial/deepwater reservoirs with fast data conditioning: methodology and case studies // SPE 56821-MS. 1999.

6. Strebelle S.B., Journel A.G. Reservoir modeling using multiple-point statistics // SPE 71324. 2001.

7. Strebelle S.B., Payrazyan K. Modeling of a deepwater turbidite reservoir conditional to seismic data using multiple-point statistics // SPE 77425. 2002.

8. Liverpool T.B., Edwards S.F. The dynamics of a meandering river. Preprint condmat/9608080 (http://arXiv.org).

9. Meakin P., Sun T., Jossang T., Scwarz K. A simulation model for meandering rivers and their associated sedimentary environments // Physica A. 1996. Vol. 233. P. 606.

10. Leheny R.L., Nagel S.R. Model for the evolution of river networks // Phys. Rev. Lett. 1993. Vol. 71. P. 1470.

11. Лоскутов А.Ю., Михайлов А.С. Введение в синергетику. М.: Наука, 1990. 272 с.

12. Sapozhnikov V.B., Nikora V.I. Simple computer model of a fractal river network with fractal individual watercourses // J. Phys. A: Math. Gen. 1993. Vol. 26. L623.

13. Glock W.S. The development of drainage system: a synoptic view // Geograph. Rev. 1931. Vol. 21. P. 475.

14. Hack J.T. Studies of longitudinal stream profiles in Virginia and Maryland // US Geol. Surv. Prof. Paper. 1957. Vol. 294B. P. 45.

Status: 
одобрено к публикации
Short Text (PDF): 
Full Text (PDF): 

BibTeX

@article{Сидоренко-IzvVUZ_AND-15-3-74,
author = {V. V. Sidorenko and V. N. Surtaev and М. М. Khasanov},
title = {NEW APPROACH TO MODELING OF NATURAL FLUVIAL OIL RESERVOIRS},
year = {2007},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {15},number = {3},
url = {https://old-andjournal.sgu.ru/en/articles/new-approach-to-modeling-of-natural-fluvial-oil-reservoirs},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2007-15-3-74​-86},pages = {74--86},issn = {0869-6632},
keywords = {-},
abstract = {We discuss the conception of the adaptive modeling of the natural oil reservoirs. This conception is based on application of simple mathematical algorithms to imitate the physical processes, defining the reservoir structure. As an example the possibility of fluvial reservoir modeling by a cellular automata is considered. }}