NEW TYPE OF BIFURCATIONS IN THE MODIFIED RAYLEIGH–BENARD ´ CONVECTION PROBLEM
Cite this article as:
Sudakov I. A., Vakulenko S. А., Sukacheva Т. . NEW TYPE OF BIFURCATIONS IN THE MODIFIED RAYLEIGH–BENARD ´ CONVECTION PROBLEM. Izvestiya VUZ. Applied Nonlinear Dynamics, 2013, vol. 21, iss. 2, pp. 145-162. DOI: https://doi.org/10.18500/0869-6632-2013-21-2-145-162
The original Rayleigh–Benard convection is a standard example of the system where bifurcations occur with changing of a control parameter. In this paper we consider the modified Rayleigh–Benard convection problem including radiative effects as well as gas sources on a surface. Such formulation leads to the identification of new type of bifurcations in the problem besides the well-known Benard cells. This problem is very important for mathematics of climate because it proves the occurrence of the climate system tipping point related to greenhouse gas emission into the atmosphere.
1. Thompson J.M.T., Sieber J. Predicting climate tipping as a noisy bifurcation: A review // Int J. Bif. Chaos. 2011. Vol. 21, No 2. P. 399.
2. Монин А.С., Шишков Ю.А. Климат как проблема физики // Успехи физических наук. 2000. No 4. С. 419.
3. Lorenz E.N. Deterministic nonperiodic flow // Journal of the Atmospheric Sciences. 1963. Vol. 20, No 2. P. 130.
4. Чуличков А.И. Математические модели нелинейной динамики. М.: Физматлит, 2000.
5. Tucker W. The Lorenz attractor exists // C. R. Acad. Sci. Paris. 1999. Vol. 328. P. 1197.
6. Goody R.M. The influence of radiative transfer on cellular convection // J. Fluid Mech. 1956. V. 1. P. 424.
7. Larson V.E. The effects of thermal radiation on dry convective instability // Dynamics of Atmospheres and Oceans. 2001. Vol. 34. P. 45.
8. Goody R.M. Atmospheric Radiation. I. Theoretical Basis. Oxford University Press, NewYork, 1964.
9. Goody R.M. Corrigendum // J. Fluid Mech. 1956. Vol. 1. P. 670.
10. Goody R.M., Yung Y.L. Atmospheric Radiation: Theoretical Basis, 2nd Edition. Oxford University Press, New York, 1989.
11. Gille J., Goody R.M. Convection in a radiating gas // J. Fluid Mech. 1964. Vol. 20. P. 47.
12. Goody R.M. Principles of Atmospheric Physics and Chemistry. Oxford University Press, New York, 1995.
13. Spiegel E.A. The convective instability of a radiating fluid layer // Astrophys. J.V. 1960. Vol. 132. P. 716.
14. Spiegel E.A., Veronis G. On the Boussinesq approximation for a compressible fluid // Astrophys. J. 1960. Vol. 131. P. 442.
15. Larson V.E. Stability properties of and scaling laws for a dry radiative-convective atmosphere // Q. J. R. Meteorol. Soc. 2000. Vol. 126. P. 145.
16. Murgai M.P., Khosla P.K. A study of the combined effect of thermal radiative transfer and a magnetic field on the gravitational convection of an ionized fluid // J. Fluid Mech. 1962. Vol. 14. P. 433.
17. Narasimha R., Vasudeva Murthy A.S. The energy balance in the Ramdas layer // Bound. Layer Meteorol. 1995. Vol. 76. P. 307.
18. Vasudeva Murthy A.S, Srinivasan J., Narasimha R. A theory of the lifted temperature minimum on calm clear nights // Phil. Trans. R. Soc. London A. 1993. Vol. 344. P. 183.
19. Sudakov I., Vakulenko S. Bifurcations of the climate system and greenhouse gas emissions // Philos. Trans. A Math. Phys. Eng. Sci. 2013: 371(1991):20110473.
20. Bledoui F., Soufani A. The onset of Rayleigh–Benard instability in molecular radiating gases // Phys. Fluids A. 1997. Vol. 9. P. 3858.
21. Getling A.V. On the scales of convection flows in a horizontal layer with radiative energy transfer // Atmos. Oceanic Phys. 1980. Vol. 16. P. 63.
22. Veronis G. Penetrative convection // Astrophys. J. 1963. Vol. 137. P. 641.
23. Vincenti W.G., Traugott S.C. The coupling of radiative transfer and gas motion // Annu. Rev. Fluid Mech. 1971. Vol. 3. P. 89.
24. Полежаев В.И., Яремчук В.П. Численное моделирование двумерной нестационарной конвекции в горизонтальной слое конечной длины, подогреваемом снизу // Механика жидкости и газа. 2001. No 4. C. 34.
25. Joseph D.D. Nonlinear stability of the Boussinesq equations by the method of energy // Arch. Ration. Mech. Anal. 1965. Vol. 22. P.163.
26. Судаков И.А. Динамика протаивания мерзлотных озер и изменения климата // Научно-технические ведомости Санкт-Петербургского государственного поли-
технического университета. Физико-математические науки. 2011. No 2. С. 74.
27. Генри Д. Геометрическая теория полулинейных параболических уравнений. М.: Мир, 1984.
28. Drazin P.G., Reid W.H. Hydrodynamic Stability. Cambridge University Press, New York, 1981.
29. Бесов О.В., Ильин В.П., Никольский С.М. Интегральные представления функций и теоремы вложения. М.: Наука, 1975.
30. Ладыженская О.А. Математические вопросы динамики вязкой несжимаемой жидкости. М.: Наука, 1970.
31. Стейн И.М. Сингулярные интегралы и дифференциальные свойства функций. М.: Мир, 1973.
32. Фридман А. Уравнения с частными производными параболического типа. М.: Мир, 1968.
33. Сорокин В.С. О стационарных движениях жидкости, подогреваемой снизу // ПММ. 1954. No 18, вып. 2. C. 197.
34. Гершуни Г.З., Жуховицкий Е.М. Конвективная устойчивость несжимаемой жидкости. М.: Наука, 1972.
35. Гершуни Г.З., Жуховицкий Е.М. Конвективная устойчивость // Итоги науки и техники. Серия «Механика жидкости и газа». 1978. Т. 11. С. 66.
36. Straughan B. The Energy Method, Stability, and Nonlinear Convection. Springer, New York, 1992.
37. Barnsley M.F., Demko S. Iterated function systems and the global construction of fractals// Proc. Roy. Soc. London Ser. A. 1978. Vol. 399. 1817. P. 243.
BibTeX
author = {I. A. Sudakov and S. А. Vakulenko and Т. G. Sukacheva },
title = {NEW TYPE OF BIFURCATIONS IN THE MODIFIED RAYLEIGH–BENARD ´ CONVECTION PROBLEM},
year = {2013},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {21},number = {2},
url = {https://old-andjournal.sgu.ru/en/articles/new-type-of-bifurcations-in-the-modified-rayleigh-benard-convection-problem},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2013-21-2-145-162},pages = {145--162},issn = {0869-6632},
keywords = {Rayleigh–Benard convection,bifurcations,radiation,gas emission,tipping point,climate.},
abstract = {The original Rayleigh–Benard convection is a standard example of the system where bifurcations occur with changing of a control parameter. In this paper we consider the modified Rayleigh–Benard convection problem including radiative effects as well as gas sources on a surface. Such formulation leads to the identification of new type of bifurcations in the problem besides the well-known Benard cells. This problem is very important for mathematics of climate because it proves the occurrence of the climate system tipping point related to greenhouse gas emission into the atmosphere. }}