NOISE-INDUCED BACKWARD BIFURCATIONS IN STOCHASTIC ROESSLER SYSTEM
Cite this article as:
Ryashko L. B., Stihin P. V. NOISE-INDUCED BACKWARD BIFURCATIONS IN STOCHASTIC ROESSLER SYSTEM. Izvestiya VUZ. Applied Nonlinear Dynamics, 2005, vol. 13, iss. 4, pp. 20-36. DOI: https://doi.org/10.18500/0869-6632-2005-13-4-20-36
Noise essentially influences the behavior of deterministic cycles of dynamical systems. Backward bifurcations of stochastic cycles for nonlinear Roessler model are investigated. Two approaches are demonstrated. In empirical approach the distribution densities of intersection points in intersecting planes are used. Theoretical analysis is based on stochastic sensitivity functions. This approach allows to achieve rather simple approximation of distribution densities in planes. Вifurcational values for noise intensities are found.
1. Стратонович Р.Л. Избранные вопросы теории флуктуаций в радиотехнике. М.: Сов. Радио, 1961.
2. Диментберг М.Ф. Нелинейные стохастические задачи механических колебаний. М.: Наука, 1980.
3. Неймарк Ю.И., Ланда П.С. Стохастические и хаотические колебания. М.: Наука, 1987.
4. Soong T.T., Grigoriu M. Random vibration of mechanical and structural systems. RTR Prentice-Hall. Englewood Cliffs. New Jersey. 1993.
5. Arnold L. Random dynamical systems. Springer-Verlag. Berlin, 1998.
6. Landa P.S., McClintock P.V.E. Changes in the dynamical behavior of nonlinear systems induced by noise // Physics Reports. 2000. Vol.323. P.1.
7. Anishchenko V.S., Neiman A.B. Structure and properties of chaos in presence of noise // Nonliear Dynamics of structures / Ed. R.Z. Sagdeev et al. Singapore: World Scientific, 1991. P.21.
8. Crutchfield J., Nauenberg M., Rudnick J. Scaling for external noise at the onset of chaos // Phys. Rev. Lett. 1981. Vol. 46. P. 933.
9. Crutchfield J., Farmer J., Huberman B. Fluctuations and simple chaotic dynamics // Phys. Rep. 1982. Vol. 92. P. 45.
10. Arnold L., Horsthemke W., Lefever R. White and coloured external noise and transition phenomena in nonlinear systems // Zs. Phys. 1978. B29. P.867.
11. Хорстхемке В., Лефевр Р. Индуцированные шумом переходы. М.: Мир, 1987.
12. Стратонович Р.Л., Ланда П.С. Воздействие шумов на генератор с жестким возбуждением // Известия вузов. Радиофизика. 1959. Т. 2 No1. С. 37.
13. Lefever R., Turner J. Sensitivity of a Hopf bifurcation to external multiplicative noise // In Fluctuations and sensitivity in nonequilibrium systems / Eds W.Horsthemke, D.K.Kondepudi, Springer-Verlag. Berlin. 1984.
14. Lefever R., Turner J. Sensitivity of a Hopf bifurcation to multiplicative colored noise // Phys. Rev. Lett. 1986. Vol. 56. P. 1631.
15. Franzoni L., Mannella R., McClintock P., Moss F. Postponement of Hopf bifurcations by multiplicative colored noise // Phys. Rev. A. 1987. Vol. 36. P.834.
16. Altares V., Nicolis G. Stochastically forced Hopf bifurcation: approximate Fokker Planck equation in the limit of short correlation times // Phys. Rev. A. 1988. Vol. 37. P. 3630.
17. Neiman A., Anishchenko V., Kurths J. Period-doubling bifurcations in the presence of colored noise // Phys. Rev. E. 1994. Vol. 49. P. 3801.
18. Gao J. B., Hwang S. K., Liu J. M. When can noise induce chaos? // Phys. Rev. Lett. 1999. Vol. 82, No 6. P. 1132.
19. Ying-Cheng L., Zonghua L., Billings L., Schwartz I. Noise-induced unstable dimen- sion variability and transition to chaos in random dynamical systems // Phys. Rev. E. 2003. Vol. 67. P.026210.
20. Xu B., Lai Y.-C., Zhu L., Do Y. Experimental characterization of transition to chaos in the presence of noise // Phys. Rev. Lett. 2003. Vol. 90. P. 164101.
21. Roessler O.E., Wegman K. Chaos in Zhabotinski reaction // Nature. 1978. Vol. 271. P. 89.
22. Arnold L., Bleckert G., Schenk-Hoppe K. (1999). The stochastic Brusselator: parametric noise destroys Hopf bifurcation // in: Stochastic Dynamics / Eds H. Crauel, M. Gundlach. Springer. 1999. P.71.
23. Arnold L. and Boxler P. Stochastic bifurcation: Instructive examples in dimension one // in Diffusion processes and related problems in analysis / Eds Mark Pinsky and Volker Wihstutz, Vol. II: Stochastic flows. Progress in Probability. Boston Basel Stuttgart. Birkhaeuser. 1992. Vol. 27. P. 241.
24. Crauel H., Imkeller P., Steinkamp M. Bifurcations of one-dimensional stochastic differential equations // in Stochastic dynamics / Eds H. Crauel and M. Gundlach. Springer–Verlag. New York. 1999. P. 27.
25. Leng G., Namachchivaya N., Talwar S. Robustness of nonlinear systems perturbed by external random excitation // ASME Journal of Applied Mechanics. 1992. Vol. 59. P. 1.
26. Malick K., Marcq P. Stability analysis of noise-induced Hopf bifurcation // Eur. Phys. J. 2003. Vol. 36. P. 119.
27. Baras F. Stochastic analysis of limit cycle behavior // Phys. Rev. Lett. 1996. Vol. 77. P. 1398.
28. Башкирцева И.А., Ряшко Л.Б. Метод квазипотенциала в исследовании локальной устойчивости предельных циклов к случайным воздействиям // Известия вузов. Прикладная нелинейная динамика. 2001. Т.9, No 6. С.104.
29. Bashkirtseva I.A., Ryashko L.B. Sensitivity analysis of stohastically forced Lorenz model cycles under period-doubling bifurсations // Dynamic systems and applications. 2002. Vol. 11. P. 293.
30. Bashkirtseva I. A., Ryashko L. B. Stochastic sensitivity of 3D-cycles // Mathematics and Computers in Simulation. 2004. Vol. 66. Issue 1 (June 2004). P. 55.
31. Башкирцева И.А., Ряшко Л.Б., Стихин П.В. Стохастическая чувствительность циклов системы Ресслера при переходе к хаосу // Известия вузов. Прикладная нелинейная динамика. 2003. Т. 11, No 6. С. 32.
32. Вентцель А.Д., Фрейдлин М.И. Флуктуации в динамических системах под действием малых случайных возмущений. М.: Наука. 1979.
33. Day M.V. Regularity of boundary quasi-potentials for planar systems// Applied Mathematics and Optimization. 1994. Vol. 30. P. 79.
34. Naeh T., Klosek M.M., Matkowsky B.J., Schuss Z. A direct approach to the exit problem// SIAM Journal Appl.Math. 1990. Vol. 50. No 2. P. 595.
35. Мильштейн Г.Н., Ряшко Л.Б. Первое приближение квазипотенциала в задачах об устойчивости систем со случайными невырожденными возмущениями // Прикл. математика и механика 1995. Т. 59. Вып. 1. С. 51.
BibTeX
author = {L. B. Ryashko and P. V. Stihin},
title = {NOISE-INDUCED BACKWARD BIFURCATIONS IN STOCHASTIC ROESSLER SYSTEM},
year = {2005},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {13},number = {4},
url = {https://old-andjournal.sgu.ru/en/articles/noise-induced-backward-bifurcations-in-stochastic-roessler-system},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2005-13-4-20-36},pages = {20--36},issn = {0869-6632},
keywords = {-},
abstract = {Noise essentially influences the behavior of deterministic cycles of dynamical systems. Backward bifurcations of stochastic cycles for nonlinear Roessler model are investigated. Two approaches are demonstrated. In empirical approach the distribution densities of intersection points in intersecting planes are used. Theoretical analysis is based on stochastic sensitivity functions. This approach allows to achieve rather simple approximation of distribution densities in planes. Вifurcational values for noise intensities are found. }}