NOISE-INDUCED BIFURCATIONS IN BISTABLE OSCILLATOR
Cite this article as:
Vadivasova Т. Е., Zakharova А. S., Anishenko V. S. NOISE-INDUCED BIFURCATIONS IN BISTABLE OSCILLATOR. Izvestiya VUZ. Applied Nonlinear Dynamics, 2009, vol. 17, iss. 2, pp. 114-122. DOI: https://doi.org/10.18500/0869-6632-2009-17-2-114-122
We investigate bistable oscillator under the influence of additive, white and colored, noise. We have found noise-induced bifurcations that consist in a qualitative change of stationary distribution of oscillations amplitude. In the region of bimodal distribution the effect of coherent resonance takes place both for white and colored noise.
1. Хорстхемке В., Лефевр Р. Индуцированные шумом переходы. М.: Мир, 1987.
2. Bulsara A.R., Schieve W.C., Gragg R.F. Phase transitions induced by white noise in bistable optical systems // Phys. Lett. A. 1978. Vol. 68. P. 294.
3. Анищенко В.С., Сафонова М.А. Индуцированное шумом экспоненциальное разбегание фазовых траекторий в окрестности регулярных аттракторов // Письма в ЖТФ. 1986. Т. 12, No 12. С. 740.
4. Sigeti D., Horsthemke W. Pseudo-regular oscillations induced by external noise // J.Stat.Phys. 1989. Vol. 54. P. 1217.
5. Schimansky-Geier L., Herzel H. Positive Lyapunov exponents in the Kramers oscillator // Journal of Statistical Physiks. 1993. Vol. 70. P. 141.
6. Armbruster D., Stone E., Kirk V. Noisy heterodinic networks // Chaos. 2003. Vol. 13, No 1. P. 71.
7. Finn J.M., Tracy E.R., Cooke W.E. and Richardson A.S. Noise stabilised random attractor // Phys. Rev. E. 2006. Vol. 73. P. 026220(12).
8. Arnold L. Random Dynamical System. Springer, Berlin, 2003.
9. Ushakov O.V.,Wunsche H.-J., et al. ` Coherence resonance near a Hopf bifurcation // Phys. Rev. Lett. 2005. Vol. 95, 123903(4).
10. Ланда П.С. Автоколебания в системах с конечным числом степеней свободы. М.: Наука, 1980.
11. Стратонович Р.Л. Избранные вопросы теории флуктуаций в радиотехнике. М.: Сов. радио, 1961.
12. Вентцель А.Д., Фрейдлин М.И. Флуктуации в динамических системах под действием малых случайных возмущений. М.: Наука, 1979.
13. Pikovsky A., Kurths J. Coherence resonance in a noisy driven excitable system // Phys. Rev. Lett. 1997. Vol. 78. P. 775.
BibTeX
author = {Т. Е. Vadivasova and А. S. Zakharova and Vadim S. Anishenko},
title = {NOISE-INDUCED BIFURCATIONS IN BISTABLE OSCILLATOR},
year = {2009},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {17},number = {2},
url = {https://old-andjournal.sgu.ru/en/articles/noise-induced-bifurcations-in-bistable-oscillator},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2009-17-2-114-122},pages = {114--122},issn = {0869-6632},
keywords = {Noise influence,stochastic bifurcation,bistable oscillator,coherent resonance.},
abstract = {We investigate bistable oscillator under the influence of additive, white and colored, noise. We have found noise-induced bifurcations that consist in a qualitative change of stationary distribution of oscillations amplitude. In the region of bimodal distribution the effect of coherent resonance takes place both for white and colored noise. }}