ON THE PERIOD-MULTIPLYING BIFURCATION OF GLACIAL CYCLES IN THE PLIOCENE – PLEISTOCENE


Cite this article as:

Vakulenko N. ., Ivashchenko N. N., Kotlyakov V. M., Sonechkin D. М. ON THE PERIOD-MULTIPLYING BIFURCATION OF GLACIAL CYCLES IN THE PLIOCENE – PLEISTOCENE. Izvestiya VUZ. Applied Nonlinear Dynamics, 2013, vol. 21, iss. 2, pp. 88-112. DOI: https://doi.org/10.18500/0869-6632-2013-21-2-88-112


In the Pliocene (about five – two million years before present) global climate fluctuated with a period corresponding well 41-thousand-year cycle of changes in the Earth’s axis inclination to the ecliptic plane. Then, this period has disappeared, despite the fact that the 41-thousand-year cycle even slightly increased its scope and, therefore, the response to it would have only strengthened. By analyzing paleoclimatic series covering the Pliocene and subsequent Pleistocene, we show that the response of the climate system simply became unstable and therefore unobservable. At the same time, through period-doubling bifurcation, a well-known in the theory of nonlinear dynamical systems, new stable and observable climatic oscillations have been excited. Further, they experienced several secondary bifurcations, at which their periods alternately tripled and doubled again.

DOI: 
10.18500/0869-6632-2013-21-2-88-112
Literature

1. Hays J.D., Imbrie J., Shackelton N.J. Variations in the Earth’s orbit: Pacemaker of the Ice Ages? Science. 1976. Vol. 194. P. 1121.

2. Ashkenazy Y. The role of phase locking in a simple model for glacial dynamics // Climate Dynamics. 2006. Vol. 27. doi:10.1007/s00382-006-0145-5.

3. Ashkenazy Y., Tziperman E. Are the 41 kyr glacial oscillations a linear response to Milankovitch forcing? Quat. Sci. Rev. 2004. Vol. 23. doi:10.1016/j.quascirev.2004.04.008.

4. Crowley T.J., Hyde W.T. Transient nature of late Pleistocene climate variability // Nature. 2009. Vol. 456. P. 226.

5. Drysdale R.N., Hellstrom J.C., Zanchetta G. et al. Evidence for obliquity forcing of glacial termination II // Science. 2009. Vol. 325. P. 1527.

6. Huybers P., Wunsch C. Obliquity pacing of the late Pleistocene glacial terminations // Nature. 2005. Vol. 434. P. 491.

7. Raymo M.E., Huybers P. Unlocking the mysteries of the ice ages // Nature. 2008. Vol. 451. P. 284.

8. Raymo M.E., Nisancioglu K. The 41 kyr world: Milankovitch’s other unsolved mystery // Paleoceanology. 2003. Vol. 18. doi: 10.1029/2002PA000791.

9. Tziperman E., Raymo M.E., Huybers P. et al. Consequences of pacing the Pleistocene 100 kyr ice ages by nonlinear phase locking to Milankovitch forcing // Paleoceanology. 2006. Vol. 21. P. PA4206. doi;10.1029/2005PA001241.

10. Huybers P. Antarctics’s orbital beat // Science. 2009. Vol. 325. P. 1085.

11. Huybers P. Early Pleistocene glacial cycles and the integrated summer insolation forcing. Science. 2006. Vol. 313. P. 508.

12. Berger A. Long-term variations of daily insolation and Quaternary climatic changes // J. Atmos. Sci. 1978. Vol. 35. P. 2362.

13. Berger A., Loutre M.F. Insolation values for the climate of the last 10 million years // Quat. Sci. Rev. 1991. Vol. 10. No 4. P. 297.

14. Berger A., Melice J.L., Loutre M.F. On the origin of the 100-kyr cycles in the astronomical forcing // Paleoceanology. 2005. Vol. 20. PA4019. doi:10.1029/2005PA001173.

15. Laskar J., Joutel F., Boudin F. Orbital, precessional, and insolation quantities for the earth from −20 myr to +10 myr // Astronomy and Astrophysics. 1993. Vol. 270. P. 522.

16. Laskar J., Robutel P., Joutel F. et al. A long-term numerical solution for the insolation quantities of the Earth // Astronomy and Astrophysics. 2004. Vol. 428. P. 261.

17. Vernekar A.D. Long-term global variations of incoming solar radiation // Meteorol. Monogr. 1972. Vol. 34. 21 p.

18. Монин А.С. Вращение Земли и климат. Л.: Гидрометеоиздат, 1972.

19. Монин А.С., Сонечкин Д.М. Колебания климата по данным наблюдений. Тройной солнечный и другие циклы. М.: Наука, 2005.

20. Ghil M. Theoretical climate dynamics: an introduction. In: Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics. M. Ghil, R. Benzi and G. Parisi (eds.). New York, North Holland, 1985, 347.

21. Wunsch C. The spectral description of climate change including the 100 ky energy // Climate Dynamics. 2003. Vol. 20. P. 353.

22. Le Treut H., Ghil M. Orbital forcing, climatic interactions, and glacial cycles // J. Geophys. Res. 1983. Vol. 88 (C9). 5167.

23. Imbrie J., Boyle E.A., Clemens S.C. et al. On the structure and origin of major glacial cycles. 1. linear responses to Milankovitch forcing // Paleoceanography. 1992. Vol. 7. P. 701.

24. Imbrie J., Berger A., Boyle E.A. et al. On the structure and origin of major glacial cycles. 2. The 100 000-year cycle // Paleoceanography. 1993. Vol. 8. P. 699.

25. Yiou P., Genthon C., Ghil M. et al. High-frequency paleovariability in climate and CO2 levels from Vostok ice core records // J. Geophys. Res. 1991. Vol. B12996. P. 20365.

25. Ghil M. Cryothermodynamics: the chaotic dynamics of paleoclimate // Physica D. 1994. Vol. 77. P. 130.

26. Rial J.A. Pacemaking the Ice ages by frequency modulation of Earth’s orbital eccentricity // Science. 1999. Vol. 285. P. 564.

27. Rial J.A., Anaclerio C.A. Understanding nonlinear responses of the climate system to orbital forcing // Quaternary Science reviews. 2000. Vol. 19. P. 1709.

28. Winograd I.J., Coplen C., Landwehr J.M. et al. Continuous 500000-year climate record from vein calcite in Devils Hole, Nevada // Science. 1992. Vol. 258. P. 255.

29. Raymo M.E. The timing of major climate terminations // Paleoceanography. 1997. Vol. 1294. P. 577.

30. Petit J.R., Jouzel J. Raynaud D. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica // Nature. 1999. Vol. 399. P. 429.

31. Котляков В.М. Гляциология Антарктиды. М.: Наука, 2000.

32. Zachos J., Pagani M., Sloan L., Thomas E., Billups K. Trends, rhythms, and aberrations in global climate 65 ma to present // Science. 2001. Vol. 292. P. 686.

33. Lowenstein T.K., Demicco R.V. Elevated Eocene atmospheric CO2 and its subsequent decline // Science. 2006. Vol. 313. P. 1928.

34. Filander S.G., Fedorov A.V. Role of tropics in changing the response to Milankovitch forcing some three million years ago // Paleoceanology. 2003. Vol. 18. doi:10.1029/2002PA000837.

35. Lawrence K.T., Zhonghui Liu, Herbert T.D. Evolution of the Eastern Tropical Pacific through Plio-Pleistocene glaciation // Science. 2006. Vol. 312. P. 79.

36. Lunt D.J., Valdes P.J., Haywood A., Rutt I.C. Closure of the Panama seaway during the Pliocene: implications for climate and Northern Hemisphere glaciation // Climate Dynamics. 2007. Vol. 30. doi:10.1007/s00382-007-0265-6.

37. Ravelo A.C., Andreasen D.H., Lyle M., Lyle A.O., Wara M.W. Regional climate shifts caused by gradual global cooling in the Pliocene epoch // Nature. 2004. Vol. 429. P. 263.

38. Sosdian S., Rosenthal Y. Deep-sea temperature and ice volume changes across the Pliocene-Pleistocene climate transitions. Science. 2009. Vol. 325. P. 306.

39. Вакуленко Н.В., Котляков В.М., Сонечкин Д.М. Свидетельство упреждающей роли океана в цикличности ледниковых эпох позднего плейстоцена // Доклады АН. 2008. Т. 421, No 3. С. 402.

40. Вакуленко Н.В., Котляков В.М., Ламберт Ф., Сонечкин Д.М. О роли океана в изменениях климата плейстоцена // Доклады АН. 2010. Т. 432, No 2. С. 260.

41. Bolton E.W., Maasch K.A., Lilly J.M. A wavelet analysis of Plio-Pleistocene climate indicators: A new view of periodicity evolution // Geoph. Res. Lett. 1995. Vol. 22: 20. P. 2753.

42. Han-Shou Liu, Chao B.F. Wavelet spectral analysis of the Earth’s orbital variations and paleoclimatic cycles // J. Atmos. Sci. 1998. Vol. 55 P. 227.

43. Press W.H., Teukolsky S.A., Vetterling W.T. et al. Numerical Recipes in FORTRAN, nded. Cambridge: Cambridge University Press, 1992. 2

44. Schulz M., Stattegger K. Spectrum: Spectral analysis of unevenly spaced paleoclimatic time series Computers & Geosciences. 1997. Vol. 23. P. 929.

45. Сонечкин Д.М. Обоснование четырехмерного (непрерывного) усвоения данных метеорологических наблюдений на основе динамико-стохастичесого подхода // Метеорология и Гидрология. 1973. No 4. С. 13.

46. Вакуленко Н.В., Иващенко Н.Н., Котляков В.М.. Сонечкин Д.М. О бифуркации умножения периода ледниковых циклов в начале плейстоцена // Доклады АН. 2011. Т.436. No 4. С. 541.

47. Shackleton N.J., Hall M.A., Pate D. Pliocene stable isotope stratigraphy of ODP site 846 // Proc. Ocean Drill. Program Sci. Results. 1995. Vol. 138. P. 337.

48. Shackleton N.J., Crowhurst S., Hagelberg T., Pisias N.G., Schneider D.A. A new late Neogene time scale: Application to Leg 138 sites // Proc. Ocean Drill. Program Sci. Results. 1995. Vol. 138. P. 73.

49. Lisiecki L.E., Raymo M.E. A Pliocene-Pleistocene stack of 57 globally distributed bentic δ doi:10.1029/2004PA001071.

50. Вакуленко Н.В., Котляков В.М., Монин А.С., Сонечкин Д.М. Особенности календаря ледниковых циклов позднего плейстоцена // Известия АН, физика атмосферы и океана. 2007. Т. 43, No 6. С. 713.

51. Арнольд В.И., Афраймович В.С., Ильяшенко Ю.С., Шильников Л.П. Теория бифуркаций. Динамические системы. 5. Итоги науки и техники. Современные проблемы математики. Фундаментальные направления. М.: ВИНИТИ, 1986.

52. Сонечкин Д.М. Стохастичность в моделях общей циркуляции атмосферы. Л.: Гидрометеоиздат, 1984.

53. Андронов А.А., Витт А.А., Хайкин С.Э. Теория колебаний. М.: Физматгиз, 1959. 18O records // Paleoceanology. 2005. Vol. 20. PA1003:

54. Афраймович В.С., Шильников Л.П. Инвариантные двумерные торы, их разрушение и стохастичность. Сб.: Методы качественной теории дифференциальных уравнений. Горький: Изд. ГГУ, 1983. С. 3.

 

Status: 
одобрено к публикации
Short Text (PDF): 

BibTeX

@article{Вакуленко-IzvVUZ_AND-21-2-88,
author = {N. V. Vakulenko and N. N. Ivashchenko and V. M. Kotlyakov and D. М. Sonechkin},
title = {ON THE PERIOD-MULTIPLYING BIFURCATION OF GLACIAL CYCLES IN THE PLIOCENE – PLEISTOCENE},
year = {2013},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {21},number = {2},
url = {https://old-andjournal.sgu.ru/en/articles/on-the-period-multiplying-bifurcation-of-glacial-cycles-in-the-pliocene-pleistocene},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2013-21-2-88-112},pages = {88--112},issn = {0869-6632},
keywords = {Paleoclimatology,Pliocene – Pleistocene glacial cycles,wavelet analysis,period- multiplying bifurcations.},
abstract = {In the Pliocene (about five – two million years before present) global climate fluctuated with a period corresponding well 41-thousand-year cycle of changes in the Earth’s axis inclination to the ecliptic plane. Then, this period has disappeared, despite the fact that the 41-thousand-year cycle even slightly increased its scope and, therefore, the response to it would have only strengthened. By analyzing paleoclimatic series covering the Pliocene and subsequent Pleistocene, we show that the response of the climate system simply became unstable and therefore unobservable. At the same time, through period-doubling bifurcation, a well-known in the theory of nonlinear dynamical systems, new stable and observable climatic oscillations have been excited. Further, they experienced several secondary bifurcations, at which their periods alternately tripled and doubled again. }}