OPTIMAL CHAOS SUPPRESSION AND TRANSITION PROCESSES IN СORRECTED MULTIPARAMETRICAL OSCILLATORY SYSTEMS
Cite this article as:
Talagaev Y. V., Tarakanov А. F. OPTIMAL CHAOS SUPPRESSION AND TRANSITION PROCESSES IN СORRECTED MULTIPARAMETRICAL OSCILLATORY SYSTEMS. Izvestiya VUZ. Applied Nonlinear Dynamics, 2008, vol. 16, iss. 5, pp. 99-114. DOI: https://doi.org/10.18500/0869-6632-2008-16-5-99-114
In the work we present a two-stage scheme of optimal correction of the dynamic system’s parameters space aimed at the transformation of the system’s chaotic regime into the regular one through minimal intensity of the perturbation. The offered technique is based on combination of the optimal control theory methods with numerical tests of chaos suppression quality. It is theoretically proved that optimal corrective functions found in the course of scheme application allow putting into practice the process of modification of chaotic attractor into the unique stable limit set corresponding to the transition of the system to the stable dynamics. Numerical experiment performed on a generalized model of an auto-oscillatory system showed that the offered correction technique is effective in multiparametrical analysis of situations that arise in optimal chaos suppression.
1. Shinbrot T., Grebogi C., Ott E., and Yorke J.A. Using small perturbations to control chaos // Nature. 1993. Vol. 882. P. 300.
2. Fradkov A.L., Evans R.J., Andrievsky B.R. Control of chaos: methods and applications in mechanics // Phil. Trans. R. Soc. A. 2006. Vol. 364. P. 2279.
3. Chen G., Moiola J.L., Wang H.O. Bifurcation control: Theories, methods, and applications // Int. J. of Bifurcation and Chaos. 2000. Vol. 10, No 3. P. 511.
4. Krener A., Kang W., Chang D.E. Control bifurcations // IEEE Trans. on Automatic Control. 2004. Vol. 49, No 8. P. 1231.
5. Kuznetsov A.P., Turukina L.V., Savin A.V., Sataev I.R., Sedova J.V., Milovanov S.V. Multi-parameter picture of transition to chaos // Izvestija Vuzov. Applied Nonlinear Dynamics. 2002. Vol. 10, No 3. P. 80.
6. Seyranian A.P., Mailybaev A.A. Multiparameter stability theory with mechanical applications. World Scientific, New Jersey, London, 2003.
7. Kuznetsov A.P., Kuznetsov S.P., Sataev I.R. A variety of period-doubling universality classes in multi-parameter analysis of transition to chaos // Physica D. 1997. Vol. 109. P. 91.
8. Kuznetsov S.P., Kuznetsov A.P., Sataev I.R. Multiparameter critical situations, universality and scaling in two-dimensional period-doubling maps // J. of Statistical Physics. 2005. Vol. 121, No 5–6. P. 697.
9. Warncke J., Bauer M., Martienssen W. Multiparameter control of high-dimensional chaotic systems // Europhys. Lett. 1994. Vol. 25, No 5. P. 323.
10. Barreto E., Grebogi C. Multiparameter control of chaos // Phys. Rev. E. 1995. Vol. 54, No 4. P. 3553.
11. Locher M., Hunt E.R. ̈ Control of high-dimensional chaos in systems with symmetry // Phys. Rev. Lett. 1997. Vol. 79. P. 63.
12. Paula A.S., Savi M.A. A multiparameter chaos control method based on OGY approach // Chaos, Solitons & Fractals. 2008 (in press).
13. Горелик В.А., Талагаев Ю.В., Тараканов А.Ф. Оптимальная параметрическая коррекция динамики систем с хаотическим аттрактором // Моделирование, декомпозиция и оптимизация сложных динамических процессов. М.: ВЦ РАН, 2006. С. 34.
14. Фрадков А.Л. Кибернетическая физика: Принципы и примеры. СПб.: Наука, 2003. 208 c.
15. Ott E., Grebogi C., Yorke J.A. Controlling chaos // Phys. Rev. Lett. 1990. Vol. 64. P. 1196.
16. Chacon R. Relative effectiveness of weak periodic excitations in suppressing homoclinic/heteroclinic chaos // Eur. Phys. J. B. 2002. Vol. 30. P. 207.
17. Lenci1 S., Rega G. Optimal control of nonregular dynamics in a Duffing oscillator// Nonlinear Dynamics. 2003. Vol. 33, No 1. P. 71.
18. Loskutov A.Y. Parametric perturbation and non-feedback controlling chaotic motion// Discrete and continuous dynamical systems-Series B. 2006. Vol. 6, No 5. P. 1157.
19. Cao H., Chen G. A simplified optimal control method for homoclinic bifurcations // Nonlinear Dynamics. 2005. Vol. 42, No 1. P. 43.
20. Dzhanoev A.R., Loskutov A., Cao H., Sanjuan M.A.F. ́ A new mechanism of the chaos suppression // Discrete and Continuous Dynamical Systems B. 2007. Vol. 7, No 2. P. 275.
21. Понтрягин Л.С., Болтянский В.Г., Гамкрелидзе Р.В., Мищенко Е.Ф. Математическая теория оптимальных процессов. М.: Наука, 1969. 384 с.
22. Ли Э.Б., Маркус Л. Основы теории и оптимального управления. М.: Наука, 1972. 574 с.
23. Атанс М., Фалб П. Оптимальное управление. М.: Машиностроение,1968.764с.
24. Talagaev Y.V., Tarakanov A.F. Modification of chaotic systems limit sets by multiparametrical optimal correction // Proc. 3rd Int. IEEE Scientific Conference on Physics and Control (PhysCon 2007), September 3rd-7th, 2007. University of Potsdam, Germany. (Full text in Open Library IPACS: http://lib.physcon.ru/).
25. Talagaev Y.V., Tarakanov A.F. Multiparametrical optimal correction for chaos suppression in a family of Duffing–van der Pol oscillators // Proc. of 6th EUROMECH. Nonlinear Dynamics Conference (ENOC 2008), June 30–July 4, 2008, Saint Petersburg, Russia.
26. Талагаев Ю.В., Тараканов А.Ф. Оптимальная параметрическая стабилизация хаотических колебательных систем // Системы управления и информационные технологии. 2007. Вып. 2(28). С. 67.
27. Sanjuan M.A.F. ́ Symmetry-restoring crises, period-adding and chaotic transitions in the cubic van der Pol oscillator // J. of Sound and Vibration. 1996. Vol. 193, No 4. P. 752.
28. Андриевский Б.Р., Фрадков А.Л. Управление хаосом. Методы и приложения. Часть 1. Методы // Автоматика и телемеханика. 2003. No 5. С. 3.
29. Кузнецов С.П. Динамический хаос (курс лекций). М.: Физматлит, 2001. 296 с.
BibTeX
author = {Yu. V. Talagaev and А. F. Tarakanov },
title = {OPTIMAL CHAOS SUPPRESSION AND TRANSITION PROCESSES IN СORRECTED MULTIPARAMETRICAL OSCILLATORY SYSTEMS},
year = {2008},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {16},number = {5},
url = {https://old-andjournal.sgu.ru/en/articles/optimal-chaos-suppression-and-transition-processes-in-sorrected-multiparametrical},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2008-16-5-99-114},pages = {99--114},issn = {0869-6632},
keywords = {-},
abstract = {In the work we present a two-stage scheme of optimal correction of the dynamic system’s parameters space aimed at the transformation of the system’s chaotic regime into the regular one through minimal intensity of the perturbation. The offered technique is based on combination of the optimal control theory methods with numerical tests of chaos suppression quality. It is theoretically proved that optimal corrective functions found in the course of scheme application allow putting into practice the process of modification of chaotic attractor into the unique stable limit set corresponding to the transition of the system to the stable dynamics. Numerical experiment performed on a generalized model of an auto-oscillatory system showed that the offered correction technique is effective in multiparametrical analysis of situations that arise in optimal chaos suppression. }}