RECONSTRUCTION OF NEUTRAL TIME-DELAY SYSTEMS
Cite this article as:
Karavaev A. S., Ponomarenko V. I., Prokhorov M. D. RECONSTRUCTION OF NEUTRAL TIME-DELAY SYSTEMS. Izvestiya VUZ. Applied Nonlinear Dynamics, 2011, vol. 19, iss. 5, pp. 3-16. DOI: https://doi.org/10.18500/0869-6632-2011-19-5-3-16
The methods are proposed for the reconstruction of time-delay systems modeled by neutral delay-differential equations from their time series. The methods are successfully applied to the recovery of generalized Mackey–Glass equation and equations modeling ship rolling and human movement from simulated data.
1. Mackey M.C., Glass L. Oscillations and chaos in physiological control systems // Science. 1977. Vol. 197. P. 287.
2. Ikeda K. Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system // Opt. Commun. 1979. Vol. 30. P. 257.
3. Epstein I.R. Delay effects and differential delay equations in chemical-kinetics // Int. Rev. in Phys. Chem. 1992. Vol. 11. P. 135.
4. Kuang Y. Delay Differential Equations with Applications in Population Dynamics. Boston: Academic Press, 1993.
5. Voss H., Kurths J. Reconstruction of non-linear time delay models from data by the use of optimal transformations // Phys. Lett. A. 1997. Vol. 234. P. 336.
6. Tian Y.-C., Gao F. Extraction of delay information from chaotic time series based on information entropy // Physica D. 1997. Vol. 108. P. 113.
7. Hegger R., B ̈unner M.J., Kantz H., Giaquinta A. Identifying and modeling delay feedback systems // Phys. Rev. Lett. 1998. Vol. 81. P. 558.
8. B ̈unner M.J., Ciofini M., Giaquinta A., Hegger R., Kantz H., Meucci R., Politi A. Reconstruction of systems with delayed feedback: (I) Theory // Eur. Phys. J. D. 2000. Vol. 10. P. 165.
9. Пономаренко В.И., Прохоров М.Д., Караваев А.С., Безручко Б.П. Определение параметров систем с запаздывающей обратной связью по хаотическим временным реализациям // ЖЭТФ. 2005. Т. 127. Вып. 3. С. 515.
10. Ort ́in S., Guti ́errez J.M., Pesquera L., Vasquez H. Nonlinear dynamics extraction for time-delay systems using modular neural networks synchronization and prediction // Physica A. 2005. Vol. 351. P. 133.
11. Siefert M. Practical criterion for delay estimation using random perturbations // Phys. Rev. E. 2007. Vol. 76. 026215.
12. Yu D., Frasca M., Liu F. Control-based method to identify underlying delays of a nonlinear dynamical system // Phys. Rev. E. 2008. Vol. 78. 046209.
13. Prokhorov M.D., Ponomarenko V.I. Reconstruction of time-delay systems using small impulsive disturbances // Phys. Rev. E. 2009. Vol. 80. 066206.
14. Zunino L., Soriano M.C., Fischer I., Rosso O.A., Mirasso C.R. Permutation-infor-mation-theory approach to unveil delay dynamics from time-series analysis // Phys. Rev. E. 2010. Vol. 82. 046212.
15. Ma H., Xu B., Lin W., Feng J. Adaptive identification of time delays in nonlinear dynamical models // Phys. Rev. E. 2010. Vol. 82. 066210.
16. Gopalsamy K. Oscillations in neutral delay-differential equations // J. Math. Phys. Sci. 1987. Vol. 21. P. 23.
17. Gopalsamy K. Stability and Oscillations in Delay Differential Equations of Population Dynamics. Dordrecht: Kluwer, 1992.
18. Hale J.K., Lunel S.M.V. Introduction to Functional Differential Equations. New York: Springer, 1993.
19. Bocharov G.A., Rihan F.A. Numerical modelling in biosciences using delay differential equations // J. Comp. Appl. Math. 2000. Vol. 125. P. 183.
20. Patanarapeelert K., Frank T.D., Friedrich R., Beek P.J., Tang I.M. A data analysis method for identifying deterministic components of stable and unstable time-delayed systems with colored noise // Phys. Lett. A. 2006. Vol. 360. P. 190.
21. Peterka R.J. Sensorimotor integration in human postural control // J. Neurophysiol. 2002. Vol. 88. P. 1097.
BibTeX
author = {A. S Karavaev and V. I. Ponomarenko and Mikhail Dmitrievich Prokhorov},
title = {RECONSTRUCTION OF NEUTRAL TIME-DELAY SYSTEMS},
year = {2011},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {19},number = {5},
url = {https://old-andjournal.sgu.ru/en/articles/reconstruction-of-neutral-time-delay-systems},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2011-19-5-3-16},pages = {3--16},issn = {0869-6632},
keywords = {Reconstruction of equations,Time-delay systems,time series analysis.},
abstract = {The methods are proposed for the reconstruction of time-delay systems modeled by neutral delay-differential equations from their time series. The methods are successfully applied to the recovery of generalized Mackey–Glass equation and equations modeling ship rolling and human movement from simulated data. }}