RHYTHMIC PROCESSES OF RENAL BLOOD FLOW AUTOREGULATION AND THEIR INTERACTION IN THE FORM OF MODULATION OF OSCILLATIONS


Cite this article as:

Pavlova O. N., Pavlov A. N. RHYTHMIC PROCESSES OF RENAL BLOOD FLOW AUTOREGULATION AND THEIR INTERACTION IN THE FORM OF MODULATION OF OSCILLATIONS. Izvestiya VUZ. Applied Nonlinear Dynamics, 2010, vol. 18, iss. 2, pp. 98-112. DOI: https://doi.org/10.18500/0869-6632-2010-18-2-98-112


Renal blood flow autoregulation at the level of individual nephrons includes two interacting mechanisms that produce oscillations with different time scales: the tubolo­glomerular feedback (TGF) and the myogenic response. Based on the wavelet­analysis of experimental data, we study in this work phenomena of amplitude and frequency modulation of myogenic oscillations by the TGF­rhythm. Features of nonlinear depen­dencies of amplitude and frequency deviation of modulated process versus the amplitude of modulating oscillations are revealed. It is shown that phenomena of modulation are essentially different between normal and hypertensive states.

DOI: 
10.18500/0869-6632-2010-18-2-98-112
Literature

1. Schreiber T. Interdisciplinary application of nonlinear time series methods // Physic Reports. 1999. Vol. 308, No 1. P. 11.

2. Tsay R.S. Detecting and modeling nonlinearity in univariate time series analysis // Statistica Sinica. 1991. Vol. 1. P. 431.

3. Kaplan D.T. and Glass L. Direct test for determinism in a time series // Phys. Rev. Lett. 1992. Vol. 68. P. 427.

4. Kennel M.B. and Isabelle S. Method to distinguish possible chaos from colored noise and to determine embedding parameters // Phys. Rev. A. 1992. Vol. 46. P. 3111.

5. Theiler J., Galdrikian B., Longtin A., Eubank S., and Farmer J.D. Detecting nonlinear structure in time series // Physica D. 1992. Vol. 58. P. 77.

6. Palus M. ˇ Testing for nonlinearity using redundancies: Quantitative and qualitative aspects // Physica D. 1995. Vol. 80. P. 186.

7. Palus M. ˇ Detecting nonlinearity in multivariate time series // Phys. Lett. A. 1996. Vol. 213. P. 138.

8. Janson N.B., Balanov A.G., Anishchenko V.S., and McClintock P.V.E. Phase synchronization between several interacting processes from univariate data // Phys. Rev. Lett. 2001. Vol. 86. P. 1749.

9. Rosenblum M.G. and Pikovsky A.S. Detecting direction of coupling in interacting oscillators // Phys. Rev. E. 2001. Vol. 64. 045202(R).

10. Palus M. and Stefanovska A. ˇ Direction of coupling from phases of interacting oscillators: An information-theoretic approach // Phys. Rev. E. 2003. Vol. 67. 055201.

11. Smirnov D.A. and Bezruchko B.P. Estimation of interaction strength and direction from short and noisy time series // Phys. Rev. E. 2003. Vol. 68. P. 046209.

12. Cimponeriu L., Rosenblum M., and Pikovsky A. Estimation of delay in coupling from time series // Phys. Rev. E. 2004. Vol. 70. 046213.

13. Sosnovtseva O.V., Pavlov A.N., Mosekilde E., Holstein-Rathlou N.-H., and Marsh D.J. Double-wavelet approach to study frequency and amplitude modulation in renal autoregulation // Phys. Rev. E. 2004. Vol. 70. 031915.

14. Bezruchko B., Ponomarenko V., Rosenblum M.G., and Pikovsky A.S. Characterizing direction of coupling from experimental observations // Chaos. 2003. Vol. 13. P. 179.

15. Palus M., Komarek V., Hrncir Z., and Sterbova K.́ Synchronization as adjustment of information rates: Detection from bivariate time series // Phys. Rev. E. 2001. Vol. 63. 046211.

16. Janson N.B., Balanov A.G., Anishchenko V.S., and McClintock P.V.E. Phase relationships between two or more interacting processes from one-dimensional time series.II. Application to heart-rate-variability data // Phys. Rev. E. 2002. Vol. 65. 036212.

17. Rosenblum M.G., Cimponeriu L., Bezerianos A., Patzak A., and Mrowka R. Identification of coupling direction: Application to cardiorespiratory interaction // Phys. Rev. E. 2002. Vol. 65. 041909.

18. Mrowka R., Cimponeriu L., Patzak A. and Rosenblum M.G. Directionality of coupling of physiological subsystems – age related changes of cardiorespiratory interaction during different sleep stages in babies // Am. J. Physiol. Regul. Comp. Integr. Physiol. 2003. Vol. 285. R1395-R1401.

19. Smirnov D.A., Bodrov M.B., Perez Velazquez J.L., Wennberg R.A., and Bezruchko B.P. Estimation of coupling between oscillators from short time series via phase dynamics modeling: Limitations and application to EEG data // Chaos. 2005. Vol. 15. 024102.

20. Gonzalez-Fernandez J.M., Ermentrout G.B. On the origin and dynamics of the vasomotion of small arteries / // Math. Biosci. 1994. Vol. 240. P. 127.

21. Horowitz A., Menice C.B., Laporte R., Morgan K.G. Mechanisms of smooth muscle contraction // Physiol. Rev. 1996. Vol. 76. P. 967.

22. Leyssac P.P., Holstein-Rathlou N.-H. Effects of various transport inhibitors on oscillating tubuloglomerular feedback pressure responses in the rat // Pflugers Arch.  ̈ 1986. Vol. 407. P. 285.

23. Chon K.H., Raghavan R., Chen Y.M., Marsh D.J., Yip K.-P. Interactions of TGF-dependent and TGF-independent oscillations in tubular pressure / // Am. J. Physiol. (Renal Physiol.) 2005. Vol. 288. P. F298.

24. Casellas D., Moore L.C. Autoregulation and tubuloglomerular feedback in juxtame-dullary glomerular arterioles // Am. J. Physiol. (Renal Fluid Electrolyte Physiol.) 1990. Vol. 258. P. F660.

25. Holstein-Rathlou N.-H., He J., Wagner A.J., Marsh D.J. Patterns of blood pressure variability in normotensive and hypertensive rats // Am. J. Physiol. (Regul. Integr. Comp. Physiol.) 1995. Vol. 269. P. R1230.

26. Holstein-Rathlou N.-H., Leyssac P.P. TGF-mediated oscillations in the proximal intratubular pressure: differences between spontaneously hypertensive rats and Wistar-Kyoto rats // Acta Physiol. Scand. 1986. Vol. 126. P. 333. Synchronization as adjustment

27. Leyssac P.P., Holstein-Rathlou N.-H. Tubulo-glomerular feedback response: enhancement in adult spontaneously hypertensive rats and effects of anaesthetics // Pflugers  Arch. 1989. Vol. 413. P. 267.

28. Yip K.-P., Holstein-Rathlou N.-H., Marsh D.J. Chaos in blood flow control in genetic and renovascular hypertensive rats // Am. J. Physiol. (Renal Fluid Electrolyte Physiol.) 1991. Vol. 261. P. F400.

29. Yip K.-P., Marsh D.J., Holstein-Rathlou N.-H. Low dimensional chaos in renal blood flow control in genetic and experimental hypertension // Physica D. 1995. Vol. 80. P. 95.

30. Sosnovtseva O.V., Pavlov A.N., Mosekilde E., Yip K.-P., Holstein-Rathlou N.-H., Marsh D.J. Synchronization among mechanisms of renal autoregulation is reduced in hypertensive rats // Am. J. Physiol. (Renal Physiol.). 2007. Vol. 293. P. F1545.

31. Sosnovtseva O.V., Pavlov A.N., Mosekilde E., Holstein-Rathlou N.-H., Marsh D.J. Double-wavelet approach to study frequency and amplitude modulation in renal autoregulation // Phys. Rev. E. 2004. Vol. 70. P. 031915.

32. Marsh D.J., Sosnovtseva O.V., Pavlov A.N., Yip K.-P., Holstein-Rathlou N.-H. Frequency encoding in renal blood flow regulation // Am. J. Physiol. (Regul. Integr. Comp. Physiol.). 2005. Vol. 288. P. R1160.

33. Sosnovtseva O.V., Pavlov A.N., Mosekilde E., Holstein-Rathlou N.-H., Marsh D.J. Double-wavelet approach to studying the modulation properties of nonstationary multimode dynamics // Physiological Measurement. 2005. Vol. 26. P. 351.

34. Pavlov A.N., Makarov V.A., Mosekilde E., Sosnovtseva O.V. Application of wavelet-based tools to study the dynamics of biological processes // Briefings in Bioinfor-matics. 2006. Vol. 7. P. 375.

35. Sosnovtseva O.V., Pavlov A.N., Pavlova O.N., Mosekilde E., Holstein-Rathlou N.-H. Characterizing the effect of L-name on intra- and inter-nephron synchronization // European Journal of Pharmaceutical Sciences. 2009. Vol. 36. P. 39.

36. Smedley G.T., Yip K.-P. Wagner, A.J., Dubovitsky S., Marsh D.J. A laser Doppler velocimetry instrument for in-vivo measurements of blood flow in single renal arterioles / // IEEE Trans. Biomed. Eng. 1993. Vol. 40. P. 290.

37. Mallat S.G. A wavelet tour of signal processing. New York: Academic Press, 1998.

38. Addison P.S. The illustrated wavelet transform handbook: applications in science, engineering, medicine and finance. Bristol; Philadelphia: IOP Publishing, 2002.

39. Kaiser G. A friendly guide to wavelets. Boston: Birkhauser, 1994.  ̈

40. Press W.H., Flannery B.P., Teucolsky S.A., Vetterling W.T. Numerical recipes: the art of scientific computing / Cambridge University Press, New York, 1986.

Status: 
одобрено к публикации
Short Text (PDF): 
Full Text (PDF): 

BibTeX

@article{Павлова -IzvVUZ_AND-18-2-98,
author = {O. N. Pavlova and A. N. Pavlov},
title = {RHYTHMIC PROCESSES OF RENAL BLOOD FLOW AUTOREGULATION AND THEIR INTERACTION IN THE FORM OF MODULATION OF OSCILLATIONS},
year = {2010},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {18},number = {2},
url = {https://old-andjournal.sgu.ru/en/articles/rhythmic-processes-of-renal-blood-flow-autoregulation-and-their-interaction-in-the-form-of},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2010-18-2-98-112},pages = {98--112},issn = {0869-6632},
keywords = {Renal blood flow autoregulation,rhythmic processes,wavelet­analysis.},
abstract = {Renal blood flow autoregulation at the level of individual nephrons includes two interacting mechanisms that produce oscillations with different time scales: the tubolo­glomerular feedback (TGF) and the myogenic response. Based on the wavelet­analysis of experimental data, we study in this work phenomena of amplitude and frequency modulation of myogenic oscillations by the TGF­rhythm. Features of nonlinear depen­dencies of amplitude and frequency deviation of modulated process versus the amplitude of modulating oscillations are revealed. It is shown that phenomena of modulation are essentially different between normal and hypertensive states. }}