ROLE OF MODEL NONLINEARITY FOR GRANGER CAUSALITY BASED COUPLING ESTIMATION FOR PATHOLOGICAL TREMOR


Cite this article as:

Sysoev I. V., Karavaev A. S. ROLE OF MODEL NONLINEARITY FOR GRANGER CAUSALITY BASED COUPLING ESTIMATION FOR PATHOLOGICAL TREMOR. Izvestiya VUZ. Applied Nonlinear Dynamics, 2010, vol. 18, iss. 4, pp. 81-90. DOI: https://doi.org/10.18500/0869-6632-2010-18-4-81-90


Estimating coupling between systems of different nature is an urgent field of nonlinear dynamics method application. This work aims to compare classical linear Granger approach and its nonlinear analogues based on analysis of ethalon dynamical systems and neurophysiological data. The results achieved show nonlinear approach to be more sensitive, and so it is able to detect significant coupling, when linear one fails.

DOI: 
10.18500/0869-6632-2010-18-4-81-90
Literature

1. Флейшман А.Н. Вариабельность ритма сердца и медленные колебания гемодинамики (нелинейные феномены в клинической практике). Новосибирск: Изд-во Сибирского отделения РАН, 2009. 193 с.

2. Baccala L.A., Sameshima K., Ballester G., Do Valle A.C. and Timo-Laria C.  ́ Studing the interactions betweenbrain structures via directed coherence and Granger causality // Applied Sig. Processing. 1998. Vol. 5. P. 40.

3. Nalatore H., Ding M., Rangarajan G. Mitigating the effects of measurement noise on Granger causality // Phys. Rev. E. 2007. Vol. 75. 031123

4. Feldman U. and Bhattacharya J. Predictability improvement as an asymmetrical measure of interdependence in bivariate time series // Int. J. of Bifurcation and Chaos. 2004. Vol. 14, No 2. P. 505.

5. Granger C.W.J. Investigating causal relations by econometric models and cross-spectral methods // Econometrica. 1969. Vol. 37, No 3. P. 424.

6. Chen Y., Rangarajan G., Feng J., Ding M. Analyzing multiple nonlinear time series with extended Granger causality // Physics Letters A. 2004. Vol. 324, No 1. P. 26.

7. Marinazzo D., Pellicoro M., and Stramaglia S. Nonlinear parametric model for Granger causality of time series // Phys. Rev. E. 2006. Vol. 73. 066216.

8. Ishiguro K., Otsu N., Lungarella M. and Kuniyoshi Y. Comparison of nonlinear Granger causality extensions for low-dimensional systems // Phys. Rev. E. 2008. Vol. 77. 036217.

9. Rosenblum M.G. and Pikovsky A.S. Detecting direction of coupling in interacting oscillators // Phys. Rev. E. 2001. Vol. 64. 045202.

10. Smirnov D. and Bezruchko B. Estimation of interaction strength and direction from short and noisy time series // Phys. Rev. E. 2003. Vol. 68. 046209.

11. Smirnov D., Barnikol U.B., Barnikol T.T., Bezruchko B.P., Hauptmann C., Buehrle C., Maarouf M., Sturm V., Freund H.-J., and Tass P.A. The generation of parkinsonian tremor as revealed by directional coupling analysis // Europhysics Letters. 2008. Vol. 83. 20003.

12. Dolan K. and Neiman A. Surrogate analysis of coherent multichannel data // Phys. Rev. E. 2002. Vol. 65. 026108.

13. Schreiber T. and Schmitz A. Surrogate time series // Physica D. 2000. Vol. 142. 346.

14. Hallett M. Overview of human tremor physiology // Movement Disorders. Vol. 13, Issue S3. P. 43

15. Wang S., Aziz T., Stein J., Liu X. Time-frequency analysis of transient neuromuscular events: dynamic changes in activity of the subthalamic nucleus and forearm muscles related to the inter-mittent resting tremor // J. Neurosci. Methods. 2005. Vol. 145. P. 151.

16. Timmer J., Haussler S., Lauk M., Lucking C.-H. Pathological tremor: deterministic chaos or nonlinear stochastic oscillators // Chaos. 2000. Vol. 10, No 1. P. 278.

17. Eichler M. Graphical modelling of dynamic relationships in multivariate time series // Handbook of Time Series Analysis / Ed. M. Winterhalder, B. Schelter and J. Timmer. Berlin: Wiley-VCH, 2006. P. 335.

18. Toro C., Pascual-Leone A., Deuschl G., Tate E., Pranzatelli M.R., and Hallett M. A common manifestation of cortical myoclonus // Neurology. 1993. Vol. 43(11). P. 2346.

19. Hellwig B., Hau ̈ ßler S., Schelter B., Lauk M., Guschlbauer B., Timmer J., Lucking C.H. Tremor-correlated cortical activity in essential tremor // The Lancet. 2001. Vol 357. P. 519.

Status: 
одобрено к публикации
Short Text (PDF): 
Full Text (PDF): 

BibTeX

@article{Сысоев-IzvVUZ_AND-18-4-81,
author = {Ilya Vyacheslavovich Sysoev and A. S Karavaev},
title = {ROLE OF MODEL NONLINEARITY FOR GRANGER CAUSALITY BASED COUPLING ESTIMATION FOR PATHOLOGICAL TREMOR},
year = {2010},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {18},number = {4},
url = {https://old-andjournal.sgu.ru/en/articles/role-of-model-nonlinearity-for-granger-causality-based-coupling-estimation-for-pathological},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2010-18-4-81-90},pages = {81--90},issn = {0869-6632},
keywords = {coupling analysis,nonlinear Granger causality,processing EEGs,dynamic modeling},
abstract = {Estimating coupling between systems of different nature is an urgent field of nonlinear dynamics method application. This work aims to compare classical linear Granger approach and its nonlinear analogues based on analysis of ethalon dynamical systems and neurophysiological data. The results achieved show nonlinear approach to be more sensitive, and so it is able to detect significant coupling, when linear one fails. }}