STATISTICAL PROPERTIES OF THE INTERMITTENT TRANSITION TO CHAOS IN THE QUASI-PERIODICALLY FORCED SYSTEM


Cite this article as:

Jalnine А. Y. STATISTICAL PROPERTIES OF THE INTERMITTENT TRANSITION TO CHAOS IN THE QUASI-PERIODICALLY FORCED SYSTEM. Izvestiya VUZ. Applied Nonlinear Dynamics, 2006, vol. 14, iss. 5, pp. 30-43. DOI: https://doi.org/10.18500/0869-6632-2006-14-5-30-43


By the example of the quasi-periodically forced logistic map we investigate statistical properties of the transition from strange nonchaotic attractor to chaos in the system with intermittent dynamics. The probability characteristics of laminar and chaotic phase distributions, as well as scaling laws for distributions of local Lyapunov exponents are studied at parameter values near the transition point. The transition is shown to possess a statistical character and to be associated with the decrease of the average length of laminar phases at nearly constant value of the average length of chaotic bursts. The probability of chaotic phase demonstrate approximately linear increase under variation of the parameter of transition. The distributions of local Lyapunov exponents satisfy common scaling laws for strange nonchaotic and chaotic attractors of intermittent type before and after transition, respectively.

Key words: 
-
DOI: 
10.18500/0869-6632-2006-14-5-30-43
Literature

1. Grebogi C., Ott E., Pelikan S., Yorke J.A. Strange attractors that are not chaotic // Physica D. 1984. Vol. 13. P. 261.

2. Ding M., Grebogi C., Ott E. Dimensions of strange nonchaotic attractors // Phys. Lett. A. 1989. Vol. 137. No 4-5. P. 167.

3. Hunt B. R., Ott E. Fractal properties of robust strange nonchaotic attractors // Phys. Rev. Lett. 2001. Vol. 87. 254101.

4. Stark J. Invariant graphs for forced systems // Physica D. 1997. Vol. 109. P. 163.

5. Feudel U., Pikovsky A., Politi A. Renormalization of correlations and spectra of a strange non-chaotic attractor // J. Phys. A: Math. Gen. 1996. Vol. 29. P. 5297.

6. Бежаева З.И., Оселедец В.И. Об одном примере «странного нехаотического аттрактора» // Функциональный анализ и его приложения. 1996. Т. 30, вып. 4. С. 1.

7. Pikovsky A.S., Feudel U. Characterizing strange nonchaotic attractors // Chaos. 1995. Vol. 5. No 1. P. 253.

8. Ditto W.L., Spano M.L., Savage H.T., Rauseo S.N., Heagy J., Ott E. Experimental observation of a strange nonchaotic attractor // Phys. Rev. Lett. 1990. Vol. 65, No 5. P. 533.

9. Ding W.X., Deutsch H., Dinklage A., Wilke C. Observation of a strange nonchaotic attractor in a neon glow discharge // Phys. Rev. E, 1997. Vol. 55, No 3. P. 3769.

10. Bezruchko B.P., Kuznetsov S.P., Seleznev Y.P. Experimental observation of dynamics near the torus-doubling terminal critical point // Phys. Rev. E. 2000. Vol. 62, No 6, P. 7828.

11. Ramaswamy R. Synchronization of strange nonchaotic attractors // Phys. Rev. E. 1997. Vol. 56. No 6. P. 7294.

12. Zhou C.-S., Chen T.-L. Robust communication via synchronization between nonchaotic strange attractors // Europhys. Lett. 1997. Vol. 38. P. 261.

13. Heagy J.F., Hammel S.M. The birth of strange nonchaotic attractors // Physica D. 1994. Vol. 70. P. 140.

14. Glendinning P. The non-smooth pitchfork bifurcation // Discrete and Continuous Dynamical Systems – Series B. 2002. Vol. 6, No 4. P. 1.

15. Yalcynkaya T., Lai Y.-C. Blowout bifurcation route to strange nonchaotic attractors // Phys. Rev. Lett. 1996. Vol. 77. No 25. P. 5039.

16. Kaneko K., Nishikawa T. Fractalization of a torus as a strange nonchaotic attractor. Phys. Rev. E. 1996. Vol. 54. No 6. P. 6114.

17. Kuznetsov S.P. Torus fractalization and intermittency // Phys. Rev. E. 2002. Vol. 65. 066209.

18. Prasad A., Mehra V., Ramaswamy R. Intermittency route to strange nonchaotic attractors // Phys. Rev. Lett. 1997. Vol. 79. No 21. P. 4127.

19. Prasad A., Mehra V., Ramaswamy R. Strange nonchaotic attractors in the quasiperiodically forced logistic map // Phys. Rev. E. 1998. Vol. 57. No 2. P. 1576.

20. Venkatesan A., Lakshmanan M., Prasad A., Ramaswamy R. Intermittency transitions to strange nonchaotic attractors in a quasiperiodically driven Duffing oscillator // Phys. Rev. E. 2000. Vol. 61. No 4. P. 3641.

21. Kim S.-Y., Lim W., Ott E. Mechanism for the intermittent route to strange nonchaotic attractors // Phys. Rev. E. 2003. Vol. 67. 056203.

22. Lai Y.-C. Transition from strange nonchaotic to strange chaotic attractors // Phys. Rev. E. 1996. Vol. 53. No 1. P. 57.

23. Lai Y.-C., Feudel U., Grebogi C. Scaling behavior of transition to chaos in quasiperiodically driven dynamical systems // Phys. Rev. E. 1996. Vol. 54. No 6. P. 6070.

24. Pomeau Y., Manneville P. Intermittent transition to turbulence in dissipative dynamical systems // Commun. Math. Phys. 1980. Vol. 74. P. 189.

25. Afraimovich V.S., Shilnikov L.P. Strange attractors and quasiattractors. Nonlinear Dynamics and Turbulence / Ed. by G.I. Barenblatt, G. Iooss, D.D. Joseph. Pitman; Boston; London; Melbourne, 1983. P. 1.

Status: 
одобрено к публикации
Short Text (PDF): 
Full Text (PDF): 

BibTeX

@article{Жалнин -IzvVUZ_AND-14-5-30,
author = {А. Yu. Jalnine},
title = {STATISTICAL PROPERTIES OF THE INTERMITTENT TRANSITION TO CHAOS IN THE QUASI-PERIODICALLY FORCED SYSTEM},
year = {2006},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {14},number = {5},
url = {https://old-andjournal.sgu.ru/en/articles/statistical-properties-of-the-intermittent-transition-to-chaos-in-the-quasi-periodically},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2006-14-5-30-43},pages = {30--43},issn = {0869-6632},
keywords = {-},
abstract = {By the example of the quasi-periodically forced logistic map we investigate statistical properties of the transition from strange nonchaotic attractor to chaos in the system with intermittent dynamics. The probability characteristics of laminar and chaotic phase distributions, as well as scaling laws for distributions of local Lyapunov exponents are studied at parameter values near the transition point. The transition is shown to possess a statistical character and to be associated with the decrease of the average length of laminar phases at nearly constant value of the average length of chaotic bursts. The probability of chaotic phase demonstrate approximately linear increase under variation of the parameter of transition. The distributions of local Lyapunov exponents satisfy common scaling laws for strange nonchaotic and chaotic attractors of intermittent type before and after transition, respectively. }}