STOCHASTIC SENSITIVITY OF EQUILIBRIUM AND CYCLES FOR 1D DISCRETE MAPS
Cite this article as:
Bashkirtseva I. A., Ryashko L. B., Tsvetkov . N. STOCHASTIC SENSITIVITY OF EQUILIBRIUM AND CYCLES FOR 1D DISCRETE MAPS. Izvestiya VUZ. Applied Nonlinear Dynamics, 2009, vol. 17, iss. 6, pp. 74-85. DOI: https://doi.org/10.18500/0869-6632-2009-17-6-74-85
The response problem of equilibrium and cycles for stochastically forced Verhulst population model is considered. Theoretical and empirical approaches are used for stochastically sensitivity analysis. The theoretical approach is based on the firth approximation method and the empirical approach is based on direct numerical simulation. The correspondence between the two approaches for Verhulst population model is demonstrated. The increase of discrete system sensitivity to external noise in the perioddoubling bifurcation zone under transition to chaos is shown.
1. Полак Л.С., Михайлов А.С. Самоорганизация в неравновесных физико-химических системах. М.: Наука, 1983.
2. Стенли Г. Фазовые переходы и критические явления. М.: Мир, 1973.
3. Haken H. Synergetics – a field beyond irreversible thermodynamics // Lect. Notes in Phys. Berlin: Springer. 1978. Vol. 84. P. 140.
4. Климонтович Ю. Л. Статистическая физика. М.: Наука, 1983.
5. Синай Я. Г. Теория фазовых переходов. М.: Наука, 1980.
6. Вильсон К.Дж. Ренормализационная группа и критические явления // УФН. 1983. Т. 141. Вып. 2. С. 109.
7. Hu B. Intoduction to real-space renormalizatin-group methods in critical and chaotic phenomen // Phys. Rep. 1982. Vol. 91, No 5. P. 233.
8. Elaydi S.N. An introduction to difference equations. Springer, 1999.
9. Шустер Г. Детерминированный хаос. М.: Мир, 1988.
10. Feigenbaum M.J. Quantitative universality for a class of nonlinear transformations // J. Stat. Phys. 1978. Vol. 19, No 1. P. 25.
11. Feigenbaum M.J. The universal metric properties of nonlinear transformations // J. Stat. Phys. 1979. Vol. 21, No 6. P. 669.
12. Feigenbaum M.J. The transition to aperiodic behavior in turbulent systems // Comm. Math. Phys. 1980. Vol. 77, No 1. P. 65.
13. Hauser P. R., Tsallis C., Curado M. F. Criticallity of the routes to chaos of the 1 − α|x|
14. Derida B., Gervois A., Pomeau Y. Universal metric properties of bifurcations of endomorphisms // J. Phys. A. 1979. Vol. 12, No 3. P. 269.
15. Пиковский А.С. О стохастических свойствах простейшей модели стохастических автоколебаний // Изв. вузов. Радиофизика. 1980. Т. 23, No 7. С. 883.
16. Huberman B.A., Rudnick J. Scaling behavior of chaotic flows // Phys. Rev. Lett. 1980. Vol. 45, No 3. P. 54.
17. Huberman B.A., Zisook A. B. Power spectra of strange attractors // Phys. Rev. Lett. 1981. Vol. 46, No 10. P. 624.
18. Huberman B.A., Hirisch J. E., Scalapino D. J. Theory of intermittency // Phys. Rev. A. 1982. Vol.25, No 1. P. 519.
19. Анищенко В. С. Стохастические колебания в радиофизических системах. Ч. 1,2. Саратов: Изд-во СГУ, 1986.
20. Неймарк Ю.И. О возникновении стохастичности в динамических системах // Изв. вузов. Радиофизика. 1974. Т. 17, No 4. С. 602.
21. Неймарк Ю.И., Ланда П.С. Стохастические и хаотические колебания. М.: Наука, 1987.
22. Crutchfield J.P., Farmer J., Huberman B.A. Fluctation and simple chaotic dynamics // Phys. Rep. 1982. Vol. 92, No 2. P. 45.
23. Crutchfield J.P., Packard N.H. Symbolic dynamics of noisy chaos // Physica D. 1983. Vol. 7D, No 1-3. P. 201.
24. Gutierrez J., Iglesias A., Rodiguez M.A. Logistic map driven by dichotomous noise // Phys. Rev. E. 1993. Vol. 48. P. 2507. z map // Phys. Rev. A. 1984. Vol. 30, No 4. P. 2074.
25. Hall P., Wolf R. C. L. Properties of invariant distributions and Lyapunov exponents
for chaotic logistic maps // Journal of the Royal Statistical Society. 1995. Vol. 57. P. 439.
26. Linz S.J., Lucke M. Parametric modulation of instabilities of a nonlinear discrete system // Phys. Rev. A. 1986. Vol. 33. P. 2694.
27. Кузнецов А.П., Капустина Ю.В. Свойство скейлинга при переходе к хаосу в модельных отображениях с шумом // Изв. вузов Прикладная нелинейная динамика. 2000. Т. 8, No 6. С. 78.
28. Кузнецов А.П., Кузнецов С.П, Седова Ю.В. О свойствах скейлинга при воздействии шума в отображении окружности с числом вращения, заданным золотым средним // Изв. вузов. Прикладная нелинейная динамика. 2005. Т. 13, No 5, 6. С. 56.
29. Crutchfield J. P., Nauenberg M., Rudnick J. Scaling for external noise at the onset of chaos// Phys. Rev. Lett. 1981. Vol. 46, No 14. P. 933.
30. Bashkirtseva I.A., Ryashko L.B. Sensitivity analysis of the stochastically and periodically forced brusselator // Phys. A. 2000. Vol. 278. P. 126.
31. Bashkirtseva I.A., Ryashko L.B. Sensitivity analysis of stochastically forced Lorenz model cycles under period-doubling bifurcations // Dynamic systems and applications. 2002. Vol. 11, No 2. P. 293.
32. Башкирцева И.А., Ряшко Л.Б., Стихин П.В. Стохастическая чувствительность циклов системы Ресслера при переходе к хаосу // Изв. вузов. Прикладная нелинейная динамика. 2003. Т. 11, No 6. С. 32.
33. Bashkirtseva I., Ryashko L. Stochastic sensitivity of 3D-cycles // Mathematics and Computers in Simulation. 2004. Vol. 66. P.55.
34. Bashkirtseva I., Ryashko L. Sensitivity and chaos control for the forced nonlinear oscillations // Chaos, Solitons & Fractals. 2005. Vol. 26. P. 1437.
BibTeX
author = {I. A. Bashkirtseva and L. B. Ryashko and I. N. Tsvetkov },
title = {STOCHASTIC SENSITIVITY OF EQUILIBRIUM AND CYCLES FOR 1D DISCRETE MAPS},
year = {2009},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {17},number = {6},
url = {https://old-andjournal.sgu.ru/en/articles/stochastic-sensitivity-of-equilibrium-and-cycles-for-1d-discrete-maps},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2009-17-6-74-85},pages = {74--85},issn = {0869-6632},
keywords = {Verhulst model,cycles,stochastic sensitivity.},
abstract = {The response problem of equilibrium and cycles for stochastically forced Verhulst population model is considered. Theoretical and empirical approaches are used for stochastically sensitivity analysis. The theoretical approach is based on the firth approximation method and the empirical approach is based on direct numerical simulation. The correspondence between the two approaches for Verhulst population model is demonstrated. The increase of discrete system sensitivity to external noise in the perioddoubling bifurcation zone under transition to chaos is shown. }}