STUDYING OF SPATIAL TRANSITION TO TEMPORAL CHAOS IN ACTIVE MEDIUM WITH UNIDIRECTIONAL COUPLING


Cite this article as:

Astakhov S. V., Vadivasova Т. Е., Anishenko V. S. STUDYING OF SPATIAL TRANSITION TO TEMPORAL CHAOS IN ACTIVE MEDIUM WITH UNIDIRECTIONAL COUPLING. Izvestiya VUZ. Applied Nonlinear Dynamics, 2008, vol. 16, iss. 2, pp. 122-130. DOI: https://doi.org/10.18500/0869-6632-2008-16-2-122-130


In the work a new model of a continuous active medium with unidirectional coupling of active elements is proposed. The Anishchenko–Astakhov oscillator was selected as an active element. The model shows both regular and chaotic in time regimes. The results  obtained for the medium are compared with the results for a chain of Anishchenko–Astakhov oscillators. The problem of conformity between the discrete model and the continuous medium is analyzed.

Key words: 
-
DOI: 
10.18500/0869-6632-2008-16-2-122-130
Literature

1. Kuramoto Y. Chemical oscillations, waves and turbulence. Berlin: Springer-Verlag, 1984.

2. Gaponov-Grekhov A.V., Rabinovich M.I. Dynamical chaos in ensembles of structures and spatial development of turbulence in unbounded systems / Ed. W. Ebeling. New York: Springer, 1986.

3. Kaneko K. Spatiotemporal chaos in one- and two- dimensional coupled map lattices // Physica D. 1989. Vol. 32. P. 60.

4. Лоскутов А.Ю., Михайлов А.С. Введение в синергетику. Москва: Наука, 1990.

5. Кузнецов А.П., Кузнецов С.П. Критическая динамика решеток связанных отображений у порога хаоса // Изв. вузов. Радиофизика. 1991. Т. 34, No 10–12. С. 1079.

6. Ланда П.С. Нелинейные колебания и волны. Москва: Наука, 1997.

7. Bohr T., Jensen M.H., Paladin G., Vulpiani A. Dynamical systems approach to turbulence. New York: Cambridge University, 1998.

8. Aranson I.S., Kramer L. The world of the complex Ginzburg–Landau equation // Rev. Mod. Phys. 2002. Vol. 74. P. 99.

9. Anishchenko V.S. Auto-oscillatory regimes in the chain of coupled generators // Self-organization by Nonlinear Irreversible Processes. Proceedings of the Third International Conference, Kuhlungsborn, GDR, March 18–22, 1985. Berlin: Springer- Verlag, 1986. P. 198.

10. Анищенко В.С., Арансон И.С., Постнов Д.Э., Рабинович М.И. Пространственная синхронизация и бифуркации развития хаоса в цепочке связанных генераторов // ДАН СССР. 1986. Т. 28, No 5. С. 1120.

11. Kaneko K. Collapse of Tori and Genesis of Chaos in Dissipative Systems. Singapore:  World Scientific, 1986.

12. Pikovsky A.S. Discrete model of spatially mixing system // Physics Letters A. 1992. Vol. 168. P. 276.

13. Rudzick O., Pikovsky A. Unidirectionally coupled map lattice as a model for open flow systems// Physical Review E. 1996. Vol. 54, No 5. P. 5107.

Status: 
одобрено к публикации
Short Text (PDF): 
Full Text (PDF): 

BibTeX

@article{Астахов -IzvVUZ_AND-16-2-122,
author = {S. V. Astakhov and Т. Е. Vadivasova and Vadim S. Anishenko},
title = {STUDYING OF SPATIAL TRANSITION TO TEMPORAL CHAOS IN ACTIVE MEDIUM WITH UNIDIRECTIONAL COUPLING},
year = {2008},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {16},number = {2},
url = {https://old-andjournal.sgu.ru/en/articles/studying-of-spatial-transition-to-temporal-chaos-in-active-medium-with-unidirectional},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2008-16-2-122-130},pages = {122--130},issn = {0869-6632},
keywords = {-},
abstract = {In the work a new model of a continuous active medium with unidirectional coupling of active elements is proposed. The Anishchenko–Astakhov oscillator was selected as an active element. The model shows both regular and chaotic in time regimes. The results  obtained for the medium are compared with the results for a chain of Anishchenko–Astakhov oscillators. The problem of conformity between the discrete model and the continuous medium is analyzed. }}