SYNCHRONIZATION IN COUPLED SELFSUSTAINED OSCILLATORS WITH NONIDENTICAL PARAMETERS
Cite this article as:
Kuznetsov A. P., Emelianova Y. P., Seleznev Е. P. SYNCHRONIZATION IN COUPLED SELFSUSTAINED OSCILLATORS WITH NONIDENTICAL PARAMETERS. Izvestiya VUZ. Applied Nonlinear Dynamics, 2010, vol. 18, iss. 2, pp. 62-78. DOI: https://doi.org/10.18500/0869-6632-2010-18-2-62-78
The particular properties of dynamics are discussed for dissipatively coupled van der Pol oscillators, nonidentical in values of parameters controlling the Andronov–Hopf bifurcation and nonlinear dissipation. Possibility of a special synchronization regime in an infinitively long band between oscillator death and quasiperiodic areas is shown for such system. Nonidentity of parameters of nonlinear dissipation results in specific form of the boundary of the main synchronization tongue, which looks like the mirror letter S. These physical features are partly revealed by means of quasiharmonic approximation and are observed in the experiments with coupled radioelectronic generators.
1. Пиковский А., Розенблюм М., Куртс Ю. Синхронизация, фундаментальное нелинейное явление. М.: Техносфера, 2003. 508 с.
2. Aronson D.G., Ermentrout G.B., Kopell N. Amplitude response of coupled oscillators // Physica D. 1990. Vol. 41. P. 403.
3. Cohen D.S., Neu J.C. Interacting oscillatory chemical reactors // Bifurcation theory and applications in the scientific disciplines / Ed. O. Gurel and O.E. Rossler. Ann. ̈N.Y. Acad. Sci. 316. 1979. P. 332.
4. Neu J.C. Coupled chemical oscillators // SIAM J. appl. Math. 1979. Vol. 37, No 2. P. 307.
5. Minorsky N. Nonlinear oscillators. Van Nostrand, 1962.
6. Rand R.H., Holmes P.J. Bifurcation of periodic motions in two weakly coupled van der Pol oscillators // Int. J. Non-Linear Mechanics. 1980. Vol. 15. P. 387.
7. Chakraborty T., Rand R.H. The transition from phase locking to drift in a system of two weakly coupled van der Pol oscillators // Int. J. Non-Linear Mechanics. 1988. Vol. 23, No 5/6. P. 369.
8. Chakraborty T. Bifurcation analysis of two weakly coupled van der Pol oscillators. Doctoral thesis. Cornell University, 1986.
9. Storti D.W., Rand R.H. Dynamics of two strongly coupled van der Pol oscillators // Int. J. Non-Linear Mechanics. 1982. Vol. 17, No 3. P. 143.
10. Pastor-Diaz I., Lopez-Fraguas A. Dynamics of two coupled van der Pol oscillators // Phys. Rev. E. 1995. Vol. 52. P. 1480.
11. Pavlidis T. Biological oscillators: The Mathematical Analysis. Academic press, 1973.
12. Poliashenko M., McKay S.R., Smith C.W. Chaos and nonisochronism in weakly coupled nonlinear oscillators // Phys. Rev. A. 1991. Vol. 44. P. 3452.
13. Poliashenko M., McKay S.R., Smith C.W. Hysteresis of synchronous – asynchronous regimes in a system of two coupled oscillators // Phys. Rev. A. 1991. Vol. 43. P. 5638.
14. Ivanchenko M.V., Osipov G.V., Shalfeev V.D., Kurths J. Synchronization of two non-scalar-coupled limit-cycle oscillators // Physica D. 2004. Vol. 189, No 1–2 . P. 8.
15. Кузнецов А.П., Паксютов В.И. Особенности устройства пространства параметров двух связанных осцилляторов ван дер Поля–Дуффинга // Изв. Вузов. Прикладная нелинейная динамика. 2005. Т. 13, No 4. С. 3.
16. Кузнецов А.П., Станкевич Н.В., Тюрюкина Л.В. Связанные осцилляторы ван дер Поля и ван дер Поля–Дуффинга: фазовая динамика и компьютерное моделирование // Изв. Вузов. Прикладная нелинейная динамика. 2008. Т. 16, No 4. C. 101.
17. Кузнецов А.П., Паксютов В.И., Роман Ю.П. Особенности синхронизации в системе связанных осцилляторов ван дер Поля, неидентичных по управляющему параметру // Письма в ЖТФ. 2007. Т. 33, вып. 15. С. 15.
18. Кузнецов А.П., Паксютов В.И., Роман Ю.П. Особенности синхронизации в системе неидентичных связанных осцилляторов ван дер Поля и ван дер Поля – Дуффинга. Широкополосная синхронизация // Изв. Вузов. Прикладная нелинейная динамика. 2007. Т. 15, No 4. С. 3.
19. Кузнецов А.П., Кузнецов С.П., Рыскин Н.М. Нелинейные колебания. М.: Физ-матлит, 2002. 292 с.
20. Кузнецов С.П. Динамический хаос. М.: Физматлит, 2001. 296 с.
21. Анищенко В.С. Сложные колебания в простых системах. М.: Наука, 1990. 312 с.
22. Kuznetsov Yuri A. Elements of applied bifurcation theory. New York: Springer, 1998. 593 p.
BibTeX
author = {A. P. Kuznetsov and Yu. P. Emelianova and Е. P. Seleznev},
title = {SYNCHRONIZATION IN COUPLED SELFSUSTAINED OSCILLATORS WITH NONIDENTICAL PARAMETERS},
year = {2010},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {18},number = {2},
url = {https://old-andjournal.sgu.ru/en/articles/synchronization-in-coupled-selfsustained-oscillators-with-nonidentical-parameters},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2010-18-2-62-78},pages = {62--78},issn = {0869-6632},
keywords = {synchronization,Van der Pol oscillator,oscillator death,dynamic regime chart.},
abstract = {The particular properties of dynamics are discussed for dissipatively coupled van der Pol oscillators, nonidentical in values of parameters controlling the Andronov–Hopf bifurcation and nonlinear dissipation. Possibility of a special synchronization regime in an infinitively long band between oscillator death and quasiperiodic areas is shown for such system. Nonidentity of parameters of nonlinear dissipation results in specific form of the boundary of the main synchronization tongue, which looks like the mirror letter S. These physical features are partly revealed by means of quasiharmonic approximation and are observed in the experiments with coupled radioelectronic generators. }}