SYNCHRONIZATION OF SPATIAL-PERIODIC MODES IN THE RING OF OSCILLATORS WITH PHASE MULTYSTABILITY
Cite this article as:
Astakhov V. V., Scherbakov P. А., Koblyanskiy S. А., Shabunin А. V. SYNCHRONIZATION OF SPATIAL-PERIODIC MODES IN THE RING OF OSCILLATORS WITH PHASE MULTYSTABILITY. Izvestiya VUZ. Applied Nonlinear Dynamics, 2008, vol. 16, iss. 4, pp. 65-73. DOI: https://doi.org/10.18500/0869-6632-2008-16-4-65-73
We study external synchronization of periodic oscillations in a ring of oscillators driven by periodic force. It is shown that each multistable state that co-exists in the system possesses its own synchronization region. We find that the periodic force with a certain frequency applied to one of the oscillators enables to switch the ring to another stable regime.
1. Блехман И.И. Синхронизация динамических систем. М.: Наука, 1971.
2. Бхатнагар П. Нелинейные волны в одномерных дисперсных системах. М.: Мир, 1983.
3. Васильев В.А., Романовский Ю.М. Автоволновые процессы. М.: Наука, 1987.
4. Заславский Г.М., Сагдеев Р.З. Введение в нелинейную физику (от маятника до турбулентности и хаоса). М.: Гл. ред. ФМЛ,1988.
5. Cross M.G., Hohenberg P.C. Pattern formation outside of equilibrium // Rev. Mod. Phys. 1993. Vol. 65, No 3. P. 851.
6. Шабунин А.В., Акопов А.А., Астахов В.В., Вадивасова Т.Е. Бегущие волны в дискретной ангармонической автоколебательной среде // Изв. вузов. Прикладная нелинейная динамика. 2005. Т. 13, No 4. C. 37.
BibTeX
author = {V. V. Astakhov and P. А. Scherbakov and S. А. Koblyanskiy and А. V. Shabunin},
title = {SYNCHRONIZATION OF SPATIAL-PERIODIC MODES IN THE RING OF OSCILLATORS WITH PHASE MULTYSTABILITY},
year = {2008},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {16},number = {4},
url = {https://old-andjournal.sgu.ru/en/articles/synchronization-of-spatial-periodic-modes-in-the-ring-of-oscillators-with-phase},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2008-16-4-65-73},pages = {65--73},issn = {0869-6632},
keywords = {-},
abstract = {We study external synchronization of periodic oscillations in a ring of oscillators driven by periodic force. It is shown that each multistable state that co-exists in the system possesses its own synchronization region. We find that the periodic force with a certain frequency applied to one of the oscillators enables to switch the ring to another stable regime. }}