SYSTEM OF THREE NON-AUTONOMOUS OSCILLATORS WITH HYPERBOLIC CHAOS Chapter 2 The model with DA-attractor
Cite this article as:
Arzhanukhina D. S., Kuznetsov S. P. SYSTEM OF THREE NON-AUTONOMOUS OSCILLATORS WITH HYPERBOLIC CHAOS Chapter 2 The model with DA-attractor. Izvestiya VUZ. Applied Nonlinear Dynamics, 2013, vol. 21, iss. 2, pp. 163-172. DOI: https://doi.org/10.18500/0869-6632-2013-21-2-163-172
We consider a system of three coupled non-autonomous van der Pol oscillators, in which the behavior of the phases over a characteridtic period is described approximately by the Fibonacci map with modification of the «Smale surgery», which leads to the appearance of DA-attractor («Derived from Anosov»). According to the numerical results, the attractor of the stroboscopic map is placed approximately on a two-dimensional torus embedded in the six-dimensional phase space and has transverse Cantor-like structure typical for this kind of attractrors.
1. Afraimovich V. and Hsu S.-B. Lectures on chaotic dynamical systems. AMS/IP Studies in Advanced Mathematics, Vol. 28. American Mathematical Society, Provi-dence RI, International Press, Somerville, MA, 2003.
2. Гукенхеймер Дж., Холмс П. Нелинейные колебания, динамические системы и бифуркации векторных полей. М.; Ижевск: Ин-т компьютерных исследований, 2002. 559 с.
3. Devaney R.L. An Introduction to Chaotic Dynamical Systems. NY: Addison–Wesley, 1989.
4. Shilnikov L. Mathematical problems of nonlinear dynamics: a tutorial // Int. J. of Bif. & Chaos. 1997. Vol. 7, No 9. P. 1353.
5. Кузнецов С.П. Гиперболические странные аттракторы систем, допускающих физическую реализацию // Изв. вузов. ПНД. 2009. Т. 17, No 4. C. 5.
6. Кузнецов С.П. Пример неавтономной системы с непрерывным временем, имеющей аттрактор типа Плыкина в отображении Пуанкаре // Нелинейная динамика. 2009. Т. 5, No 3. С. 403.
7. Кузнецов С.П. Динамический хаос и однородно гиперболические аттракторы: от математики к физике // Успехи физических наук. 2011. Т. 181, No 2. C. 121.
8. Кузнецов С.П., Селезнев Е.П. Хаотическая динамика в физической системе со странным аттрактором типа Смейла–Вильямса // ЖЭТФ. 2006. Т. 129, вып. 2. C. 400.
9. Каток А.Б., Хасселблат Б. Введение в современную теорию динамических систем / Пер. с англ. М.: Изд. «Факториал», 1999. 768 с.
10. Coudene Y. Pictures of hyperbolic dynamical systems // Notices of the American Mathematical Society. 2006. Vol. 53, No 1. P. 8.
11. Кузнецов С.П. Динамический хаос. М.: Физматлит, 2001. 296 с.
12. Берже П., Помо И., Видаль К. Порядок в хаосе. О детерминистском подходе к турбулентности. М.: Мир, 1991. 368 с.
13. Шустер Г. Детерминированный хаос. М.: Мир, 1988, 240 с.
14. Аржанухина Д.С., Кузнецов С.П. Система трех неавтономных осцилляторов с гиперболическим хаосом. Часть 1. Модель с динамикой на аттракторе, опи-сываемой отображением на торе «кот Арнольда» // Изв. вузов. Прикладная нелинейная динамика. 2012. Т.20, No6. С.56.
BibTeX
author = {D. S. Arzhanukhina and Sergey P. Kuznetsov},
title = {SYSTEM OF THREE NON-AUTONOMOUS OSCILLATORS WITH HYPERBOLIC CHAOS Chapter 2 The model with DA-attractor},
year = {2013},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {21},number = {2},
url = {https://old-andjournal.sgu.ru/en/articles/system-of-three-non-autonomous-oscillators-with-hyperbolic-chaos-chapter-2-the-model-with},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2013-21-2-163-172},pages = {163--172},issn = {0869-6632},
keywords = {hyperbolic chaos,Anosov map,Arnold’s cat map,Fibonacci map,DA-attractor.},
abstract = { We consider a system of three coupled non-autonomous van der Pol oscillators, in which the behavior of the phases over a characteridtic period is described approximately by the Fibonacci map with modification of the «Smale surgery», which leads to the appearance of DA-attractor («Derived from Anosov»). According to the numerical results, the attractor of the stroboscopic map is placed approximately on a two-dimensional torus embedded in the six-dimensional phase space and has transverse Cantor-like structure typical for this kind of attractrors. }}