TURBULENCE IN MICROWAVE ELECTRONICS: TEORETICAL APPROACHES AND EXPERIMENTAL RESULTS
Cite this article as:
Trubetskov D. I., Kalinin Y. А., Starodubov А. V., Fokin A. S. TURBULENCE IN MICROWAVE ELECTRONICS: TEORETICAL APPROACHES AND EXPERIMENTAL RESULTS. Izvestiya VUZ. Applied Nonlinear Dynamics, 2016, vol. 24, iss. 5, pp. 4-36. DOI: https://doi.org/10.18500/0869-6632-2016-24-5-4-36
A review of the current state of different theoretical approaches to the description of turbulence in electron beams and electronic devices at microwave frequencies is shown. A three types of turbulent (nonlaminar) electron beams were considered. The first type of turbulent electron beam is caused by the intersection of electronic trajectories (e.g., due to thermal velocity) and it is common to the flow of electrons at all. The turbulence of the second type is due to the instability of the electron beams, because of which a small perturbations grow for an exponentially (such instabilities include diocotron and slipping-instability). The third type –vortex turbulence, the cause of which is filamentarization of electron flow. Formed charged filaments interact among themselves, that leads to the formation of vortex structures; the presence of this structures increases the number of collective degrees of freedom and may lead to turbulence. The results of an experimental study of turbulent flows and electronic generators with their use in standalone mode and when an external signal were shown. Various types of broadband broadband microwave oscillators oscillations were investigated. We discuss the phenomenological model of turbulent the electron beam, which is a chain of superradiant clots containing electron-oscillators, chain of «vortices» ( «vortices» are describes by the modified equations of van der Pol).
DOI: 10.18500/0869-6632-2016-24-5-4-36
Paper reference: Trubetskov D. I., Kalinin Yu.A., Starodubov А.V., Fokin A.S. TURBULENCE IN MICROWAVE ELECTRONICS: TEORETICAL APPROACHES AND EXPERIMENTAL RESULTS. Izvestiya VUZ. Applied Nonlinear Dynamics. 2016. Vol. 24, Issue 5. P. 4–36.
1. Gladun A.D. // Electronnaya technika. 1966. Issue 8. P. 39-53 (in Russian).
2. Miller M. // Journal of Applied Physics. 1961. Vol. 32, Issue 9. P. 1791-1793.
3. Murie Zh. Teoriya slabogo signala. In book Electronnye Sverchvysokochastotnye Pribory so Skreschennymi Polyami. M.: Izd-vo Inostrannoy literatury, 1961. Vol I, Parts V,XII (in Russian).
4. Kyhl R.L. and Webster H.R. // IRE Transactions on Electron Devices. 1956. ED-3. P. 172-183.
5. Levy R.H. // The Physics of Fields. 1965. Vol. 8, Issue 7. P. 1288-1295.
6. Levy R.H. and Hockney R.W. // The Physics of Fields. 1968. Vol. 8. P. 766-771.
7. Leyman V.G. // Electronnaya Theknika. 1968. Issue 8. P. 26-34 (in Russian).
8. Gladun A.D., Leyman V.G. // Zhurnal Tekhnicheskoy Fiziki. 1970. Vol. 15, Issue 12. P. 2513-2517 (in Russian).
9. Karbuschev N.I., Udovichenko S.Yu. // Zhurnal Tekhnicheskoy Fiziki. 1983. Vol. 53, Issue 9. P. 1706-1709 (in Russian).
10. Leiman V.G., Nikulin M.G., Rozanov N.E. // Zhurnal Tekhnicheskoy Fiziki. 1989. Vol. 59, Issue 4. P. 111-117 (in Russian).
11. Kuznetzov S.P. // Zhurnal Tekhnicheskoy Fiziki. 1977. Vol. 47, Issue 12. P. 2483-2486 (in Russian).
12. Kravchenya P.D. Neustoichivosti v relyativistskih potokah v skreschennyh polayh. Dissertaciya po special’nosti 01.04.04. Volgograd: Volgograd State University, 2014. 116 p. (in Russian).
13. Shevchik V.N., Trubetskov D.I. Analiticheskie Metody Rascheta v Electronike SVCH. M.: Sov. Radio, 1970. 584 p. (in Russian).
14. Pierce J.R. // IRE Transactions on Electron Devices. 1956. ED-4. P. 183-190.
15. Krammer W. // Journal of Applied Physics. 1967. Vol. 37, Issue 5. P. 602-611.
16. Leiman V.G. // Electronnaya Tekhnika. 1967. Seriya 1, Issue 8. P. 15-26 (in Russian).
17. Singatullin R.M. Chislennoe issledovanie dinamiki vihrevyh struktur v sploshnyh sredah, vkluchaya plazmu. Dissertaciya po special’nosti 25.00.29 and 01.04.03. Kazan: Kazan State University of Energetics.116 p. (in Russian).
18. Rabinovich M.I., Suschik M.M. Kogerentnye Struktury v Turbulentnyh Techeniyah. Nelineynye Volny. Samoorganizaciya. M.: Nauka, 1983. P. 53-85 (in Russian).
19. Kolesnichenko A.V. Sinergeticheskii Podhod k Opisaniyu Stacionarno-Neravnovesnoi Turbulentnosti Astro-Geophisicheskih Sistem Preprint IMP named after Keldysh. M.: RAS, 2003. 37 p. (in Russian).
20. Aburdzhaniya G.D. Samoorganizacia Nelineynych Volnovyh Structur i Vihrevoy Turbulentnosti v Dispergiruyuschih Sredah. M.: KomKniga, 2006. 328 p. (in Russian).
21. Kervamishvili N.A. // Zhurnal Tekhnicheskoy Fiziki. 1990. Vol. 60, Issue 2. P. 78-84 (in Russian).
22. Driscoll C.F., Fine K.S. // The Physics of Fields B. 1965. Vol. 2, Issue 6. P. 1359-1366.
23. Golub Y.A., Nikulin M.G., Rozanov N.E. // Zhurnal Tekhnicheskoy Fiziki. 1990. Vol. 60, Issue 9. P. 78-82 (in Russian).
24. Gordeev A.V. // Plasma Physics Reports. 2008. Vol. 34, Issue 6. P. 515-518.
25. Benderskii B.Ya. Aerogidrodinamika. Kurs Lekcii s Kratkimi Biographiaymi i Interesnymi Sluchaaymi is Zhizni Uchenyh. M.-Izhevsk: NIC «Regulayrnaya i Haoticheskaya dinamika». 2012. 500 p. (in Russian).
26. Kalinin Yu.A., Starodubov A.V. // Technical Physics. 2010. Vol. 55, Issue 12. P. 1788-1792.
27. Kalinin Yu. A., Starodubov A.V., Mushtakov A.V. // Technical Physics. 2011. Vol. 56, Issue 6. P. 838-842.
28. Kalinin Yu. A., Volkova L. N. // Technical Physics Letters. 2010. Vol. 36, Issue 7. P. 668-671.
29. Kalinin Yu. A., Starodubov A. V., Volkova L. N. // Technical Physics Letters. 2010. Vol. 36, Issue 10. P. 899-901.
30. Kalinin Yu. A., Starodubov A. V. // Technical Physics Letters. 2011. Vol. 37, Issue 1. P. 91-93.
31. Mchedlova E.S., Trubetskov D.I. // Zhurnal Tekhnicheskoi Fiziki. 1994. Vol. 64, Issue 10. P. 158-167 (in Russian).
32. Kalinin Yu.A., Kildyakova O.A., Starodubov A.V., Trubetskov D.I. // Doklady Physics. 2016. Vol. 61, Issue 3. P. 112-115.
33. Kaganov V.I. // Technical Physics Letters. 2006. Vol. 32, Issue 3. P. 252-254.
34. Zhdanov S.K., Trubnikov B.A. Quazigazovye Neustoychivye Sredy. M.: Nauka, 2001. 176 p. (in Russian).
35. Trubnikov B.A. // Priroda. 2007. Issue 4. P. 68-73 (in Russian).
36. Bulanov S.V., Sasorov P.V. // Zhurnal Eksperimantalnoi i Teoreticheskoi Fiziki. 1984. Vol. 86, Issue 2. P. 479-482 (in Russian).
37. Kalinin Yu.A., Starodubov A.V., Fokin A.S. // Physics of Wave Phenomena. 2016. Vol. 24, Issue 3. P. 1-4.
38. Kalinin Yu.A., Esin A.D. Methods and Means of Physical Experiment in Vacuum Microwave Electronics. Saratov: Izd-vo Saratovsk. Gos. Univ., 1991 (in Russian).
39. Kurkin S.A., Hramov A.E. // Bulletin Russian Academy of Sciences. Physics. 2011. Vol. 75(12). P. 1609.
40. Stewart Ian. The Great Mathematical Problems: Marvels and Mysteries of Mathematics. Profile Books Ltd, 2013. 340 p.
41. Mandelbrot B.B. Fraktal’naya Geometriya Prirody. Mosk-Izhevsk: Institut Kompyuternych Tekhnologii. 2002. 656 p. (in Russian).
42. Frik P.G. Turbulentnost’: Podhody i Modeli. Mosk-Izhevsk: Institut Kompyuternych Tekhnologii. 2003. 292 p. (in Russian).
43. Novikov E.L., Stuart R.V. // Izv. Akad. Nauk USSR. Seriya Geophisicheskaya. 1964. Issue 3. P. 408-413 (in Russian).
44. Frisch U., Sulem P.-L., Nelkin M. // J. Fluid Mechanics. 1978. Vol. 87. P. 719-736.
BibTeX
author = {Dmitry Ivanovich Trubetskov and Yu. А. Kalinin and А. V. Starodubov and A. S. Fokin},
title = {TURBULENCE IN MICROWAVE ELECTRONICS: TEORETICAL APPROACHES AND EXPERIMENTAL RESULTS},
year = {2016},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {24},number = {5},
url = {https://old-andjournal.sgu.ru/en/articles/turbulence-in-microwave-electronics-teoretical-approaches-and-experimental-results},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2016-24-5-4-36},pages = {4--36},issn = {0869-6632},
keywords = {electron flow,turbulence,instability,vortex,generator,broadband microwave generation},
abstract = {A review of the current state of different theoretical approaches to the description of turbulence in electron beams and electronic devices at microwave frequencies is shown. A three types of turbulent (nonlaminar) electron beams were considered. The first type of turbulent electron beam is caused by the intersection of electronic trajectories (e.g., due to thermal velocity) and it is common to the flow of electrons at all. The turbulence of the second type is due to the instability of the electron beams, because of which a small perturbations grow for an exponentially (such instabilities include diocotron and slipping-instability). The third type –vortex turbulence, the cause of which is filamentarization of electron flow. Formed charged filaments interact among themselves, that leads to the formation of vortex structures; the presence of this structures increases the number of collective degrees of freedom and may lead to turbulence. The results of an experimental study of turbulent flows and electronic generators with their use in standalone mode and when an external signal were shown. Various types of broadband broadband microwave oscillators oscillations were investigated. We discuss the phenomenological model of turbulent the electron beam, which is a chain of superradiant clots containing electron-oscillators, chain of «vortices» ( «vortices» are describes by the modified equations of van der Pol). DOI: 10.18500/0869-6632-2016-24-5-4-36 Paper reference: Trubetskov D. I., Kalinin Yu.A., Starodubov А.V., Fokin A.S. TURBULENCE IN MICROWAVE ELECTRONICS: TEORETICAL APPROACHES AND EXPERIMENTAL RESULTS. Izvestiya VUZ. Applied Nonlinear Dynamics. 2016. Vol. 24, Issue 5. P. 4–36. Download full version }}