ZONES OF STABLE SINGLE-MODE GENERATION IN OVERMODED GYROTRONS
Cite this article as:
Бакунин В. Л., Денисов Г. Г., Завольский Н. А., Моисеев М. А. ZONES OF STABLE SINGLE-MODE GENERATION IN OVERMODED GYROTRONS. Izvestiya VUZ. Applied Nonlinear Dynamics, 2012, vol. 20, iss. 6, pp. 67-81. DOI: https://doi.org/10.18500/0869-6632-2012-20-6-67-81
During numerical simulations of the model of gyrotron with fixed field-structure, zones of stable single-mode generation of the work mode are analyzed on the plane of parameters «magnetic field – beam current». It is shown that area and sizes of the zones are strongly dependent on the spectral density of eigen-frequencies of the resonator and on number of considered parasit modes. With increase of spectral density the point of highest attainable efficiency of stable single-mode generation shifts to the region of lower currents and simultaneously this value of efficiency decreases. In the region of higher currents stable single-mode generation exists in soft self-excitation regime of the work mode, while in the region of hard self-excitation of the work mode multimode generation with power of parasit modes much less than power of the work mode arises.
1. Litvak А.G., Denisov G.G., Myasnikov V.E., Tai E.M., Azizov E.A., Ilin V.I. Development in russia of megawatt power gyrotrons // J. Infrared Milli Teraherz Waves. 2011. Vol. 332. P. 337.
2. Аликаев В.В., Денисов Г.Г., Запевалов В.Е., Курбатов В.И., Литвак А.Г., Мясников В.Е., Тай Е.М. Гиротроны для УТС // Вакуумная СВЧ электроника: Сборник обзоров. Нижний Новгород: ИПФ РАН, 2002. С. 71.
3. Методы нелинейной динамики и теории хаоса в задачах электроники сверхвысоких частот. Т.1. Стационарные процессы // Под редакцией А.А. Кураева, Д.И. Трубецкова. М.: Физматлит, 2009.
4. Thumm M. State-of-the-art of high power gyro-devices and free electron masers. Karlsruhe: KIT, 2010.
5. Nusinovich G.S. Mode interaction in gyrotrons // Int. J. Electronics. 1981. Vol. 51, № 4. P. 457.
6. Петелин М.И. Электронная селекция мод в гиротроне // Гиротрон. Сборник научных трудов. Горький: ИПФ АН СССР, 1981. С. 77.
7. Nusinovich G.S. Introduction To The Physics of Gyrotrons // The Johns Hopkins University Press, Baltimore, 2004.
8. Ginzburg N.S., Nusinovich G.S., Zavolsky N.A. Theory of non-stationary processes in gyrotrons with low Q resonators // Int. J. Electronics. 1986. Vol. 61, № 6. P. 881.
9. Завольский Н.А., Нусинович Г.С. Нестационарные процессы в гиротроне с нефиксированной структурой ВЧ поля // Радиотехника и электроника. 1991. Т. 36, № 1. С. 135.
10. Завольский Н.А., Нусинович Г.С., Павельев А.Б. Устойчивость одномодовых колебаний и нестационарные процессы в гиротронах со сверхразмерными низкодобротными резонаторами // Гиротрон. Сборник научных трудов. Горький. ИПФ АН СССР. 1989. С.84.
11. Моисеев М.А., Нусинович Г.С. К теории многомодовой генерации в гиромонотроне // Изв. вузов. Радиофизика.1974. Т. XVII, № 11. С. 1711.
12. Бляхман Л.Г., Нусинович Г.С. Динамика многомодовых электронных мазеров // Радиотехника и электроника. 1982, № 5.
13. Запевалов В.Е., Нусинович Г.С. К теории амплитудно-фазового взаимодействия мод в электронных мазерах // Изв. вузов. Радиофизика. 1989. Т. 32, № 3. С. 347.
14. Власов С.Н., Загрядская Л.И., Петелин М.И. Резонаторы и волноводы с модами шепчущей галереи для мазеров на циклотронном резонансе // Изв. вузов. Радиофизика. 1973. Т. 16, № 11. C. 1743.
15. Dumbrajs O., Glyavin M.Yu., Zapevalov V.E., Zavolsky N.A. Influence of reflections on mode competition in gyrotrons // IEEE Transactions on Plasma Science. 2000. Vol. 28. P. 588.
16. Cai S.Y., Antonsen T.M., Saraph G.Jr., Levush B. // Int. J. Electron. 1992. Vol. 72, № 5–6. P. 759.
17. Нусинович Г.С., Эрм Р.Э. КПД МЦР-монотрона с гауссовым продольным распределением высокочастотного поля // Электронная техника. Серия 1. Электроника СВЧ. 1972, № 8. С. 55.
18. Глявин М.Ю., Нусинович Г.С. Устойчивость одномодовых автоколебаний в гиротроне с синхронным взаимодействием мод // Радиотехника и электроника, 1991.
19. Dumbrajs O., Anderer J., Illy S., Piosczyk B., Thumm M., Zavolsky N.A. Multifrequency operation of a gyrotron // IEEE Transactions on Plasma Science. 1999. Vol. 27, № 2.
20. Carmel Y., Chu K.R., Read M.E., Klim K.J., Arfin B., Dialetis D., Fliflet A. Mode competition, suppression, and efficiency enhancement in overmoded gyrotron oscillators // Int. J. Infrared and MM Waves. 1982. Vol. 3. P. 645.
21. Кураев А.А., Ковалев И.С., Колосов С.В. Численные методы оптимизации в задачах электроники СВЧ. Минск: Наука и техника, 1975.
22. Нусинович Г.С. Способы подачи напряжений на импульсный гиромонотрон, обеспечивающие высокий КПД в режиме одномодовой генерации // Электронная техника. Серия 1. Электроника СВЧ. 1974. № 3. С. 44.
23. Levush B., Antonsen T.M. Mode competition and control in high-power gyrotron oscillators // IEEE Transactions on Plasma Science. 1990. Vol. 18, № 3. P. 260.
24. Grudiev A., Raguin J.-Y., Schunemann K. Numerical study of mode competition in coaxial cavity gyrotrons with corrugated insert // Int. J. of Infrared and Millimeter Waves. 2003. Vol. 24, No. 2. P. 173.
25. Bogomolov Ya.L., Bratman V.L., Ginzburg N.S., Petelin M.I., Yunakovsky A.D. Nonstationary generation in free electron lasers // Optics Communications. 1981. Vol. 36, № 3. P. 209.
26. Ginzburg N.S., Petelin M.I., Sergeev A.S. On the mechanism of self-modulatin onset in free electron lasers // Optics Communications. 1985. Vol. 55, № 4. P. 283.
BibTeX
author = {V. L. Bakunin and G. G. Denisov and N. A. Zavolsky and М. А. Moiseev},
title = {ZONES OF STABLE SINGLE-MODE GENERATION IN OVERMODED GYROTRONS},
year = {2012},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {20},number = {6},
url = {https://old-andjournal.sgu.ru/en/articles/zones-of-stable-single-mode-generation-in-overmoded-gyrotrons},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2012-20-6-67-81},pages = {67--81},issn = {0869-6632},
keywords = {Gyrotron,stable single-mode generation,spectral density of the resonator,phase relationship of the modes,parasit modes.},
abstract = { During numerical simulations of the model of gyrotron with fixed field-structure, zones of stable single-mode generation of the work mode are analyzed on the plane of parameters «magnetic field – beam current». It is shown that area and sizes of the zones are strongly dependent on the spectral density of eigen-frequencies of the resonator and on number of considered parasit modes. With increase of spectral density the point of highest attainable efficiency of stable single-mode generation shifts to the region of lower currents and simultaneously this value of efficiency decreases. In the region of higher currents stable single-mode generation exists in soft self-excitation regime of the work mode, while in the region of hard self-excitation of the work mode multimode generation with power of parasit modes much less than power of the work mode arises. }}