bifurcation

REGULAR AND CHAOTIC DYNAMICS OF TWO-RING PHASE LOCKED SYSTEM Part 1 Dynamics of frequency-phase system with identical first-order filters in control circuits

We present the results of investigation of dynamical modes in the model of oscillatory system with frequency-phase control using multi-frequency discriminator inversely switched in the chain of frequency control. The study was carried out on the basis of mathematical model of the system with one degree of freedom with the use of qualitative and numerical methods of nonlinear dynamics. It is shown that in such a system may be realized both synchronous and great number of non-synchronous periodic modes. Location parameters domains are established with different dynamic modes of the system.

NONLINEAR EFFECTS IN AUTOOSCILLATORY SYSTEM WITH FREQUENCY- PHASE CONTROL

Dynamical modes and nonlinear phenomena in the models of oscillatory system with frequency-phase control in the case of periodic nonlinear characteristics of frequency discriminator are investigated. Stability of synchronous mode is analyzed. The existences of a great number various periodic and chaotic nonsynchronous modes are established. Peculiarities of the system dynamics caused by parameters of frequency control loop are considered. The results are presented in the form of one- and two-parameter bifurcation diagrams, phase portraits, Poincare sections and waveforms of attractors.

CALCIUM OSCILLATIONS IN ASTROCYTES Part 2 Dynamics of interacting calcium oscillators

We investigated bifurcation mechanisms of oscillatory dynamics of interacting chemically excitable cells (astrocytes). In model of three interacting astrocytes we studied bifurcation transitions leading to generation of calcium oscillations induced by the intercellular diffusion. We analyzed basic mechanisms of limit cycle instabilities and destructions, typical transitions to chaotic oscillations and basic properties of intercellular synchronization.

CALCIUM OSCILLATIONS IN ASTROCYTES Part 1 Astrocyte as generator of calcium oscillations

Bifurcation mechanisms of oscillatory dynamics in a biophysical model of chemically excitable brain cells (astrocytes) were analyzed. In contrast to neuronal oscillators widely studied in nonlinear dynamics the astrocytes do not possess electrical excitability but capable to generate chemical oscillations which modulate neuronal signaling. Astrocyte dynamics is described by third-order system of ordinary differential equations derived from biophysical kinetics.

INVESTIGATION OF REGULAR AND CHAOTIC DYNAMICS OF ONE FINANCIAL SYSTEM

Based on complex numerical investigation for the nonlinear financial system introduced by Chen a map of dynamic regimes has been built, depending on the bifurcation parameters. All the major scenarios of transition to deterministic chaos have been found. Theorems of the existence of the globally exponentially attractive set and positive invariant, of periodic solutions, of Poincare–Andronov–Hopf bifurcation existence and theorems in the field of control of attractors are proved.

Pages