Realization of stable twofrequency oscillations is shown in the Maxwell–Bloch model. Birth of a stable ergodic twodimensional torus from the critical closed curve is observed. The conditions of the passage to chaos via a cascade of torus doubling bifurcations are obtained. It is established that at bifurcations points a structurally unstable threedimensional torus is produced, which gives rise to a stable doubled ergodic torus. Analytical approximation describing dynamics of the system near a point of torus birth is found.