invariant tori

MAPS WITH QUASI-PERIODICITY OF DIFFERENT DIMENSION AND QUASI-PERIODIC BIFURCATIONS

The paper discusses the construction of convenient and informative three-dimensional mappings demonstrating the existence of 2-tori and 3-tori. The first mapping is obtained by discretizing the continuous time system – a generator of quasi-periodic oscillations. The second is obtained via discretization of the Lorentz-84 climate model. The third mapping was proposed in the theory of quasi-periodic bifurcations by Simo, Broer, Vitolo.

SYNCHRONIZATION AND MULTI-FREQUENCY QUASI-PERIODICITY IN THE DYNAMICS OF COUPLED OSCILLATORS

The dynamics of ensembles of oscillators containing a small number of bibitemlits is discussed. The possible types of regimes and pecularities of bifurcations of regular and quasi-periodic attractors are analyzed. By using the method of Lyapunov exponents charts the picture of  embedding of quasi-periodic regimes of different dimension in the parameter space is revealed. Dynamics of ensembles of van der Pol and phase oscillators are compared.

DOUBLING AND DESTRUCTION OF THE TRI-FREQUENCIES TORUS IN THE NONLINEAR OSCILLATOR UNDER QUASI-PERIODIC EXITATION: EXPERIMENT

In present paper nonlinear oscillator driving by external force in a form of three harmonic signals with irrational ratios of the frequencies and the map of various dynamical regimes on the parameter plane are presented. The feature of tri-frequencies torus doubling and destruction are investigated.