метод «частиц в ячейке».

REFLEX KLYSTRON AS AN EXAMPLE OF A SELF­OSCILLATING DELAYED FEEDBACK SYSTEM

Nonstationary theory of the reflex klystron oscillator based on differential equation with delay is developed. Analysis of self­excitation conditions, steady­state oscillation regimes and their stability is presented. Application of the developed theory for calculating of output characteristics of micromachined submillimetre­band reflex klystron is presented as well. Theoretical results are compared with the results of numerical simulation based on the particle­in­cell method.

NUMERICAL SIMULATION OF THE FIELD EMISSION DIODE OSCILLATOR WITH PHOTONIC CRYSTAL RESONATOR

Results of the theoretical analysis of the diode oscillator with a field-emission cathode placed in a photonic crystal resonator are considered. The analysis of conditions of self-excitation in the small signal approximation is carried out. The nonstationary numerical model of the oscillator based on the nonstationary equation of excitation of the resonator and the particle-in-cell method is developed. Numerical simulation of the processes of oscillation build-up is performed. The simulation shows rather high output power and efficiency for reasonable values of cathode current density.