oscillations

PHENOMENON OF THE VAN DER POL EQUATION

 

This review is devoted to the famous Dutch scientist Balthasar van der Pol, who made a significant contribution to the development of radio­engineering, physics and mathematics. The review outlines only one essential point of his work, associated with the equation that bears his  name, and has a surprisingly wide range of applications in natural sciences. In this review we discuss the following matters.

• The biography of van der Pol, history of his equation and supposed precursors.

• The contribution of A.A. Andronov in the theory of self­oscillations.

MULTISTABILITY IN DYNAMICAL SMALL WORLD NETWORKS

 

We explore phase multistability which takes place in an ensemble of periodic oscillators under the action of long-distance couplings, which appear randomly between the arbitrary cells. The  system under study is Kuromoto’s model with additional dynamical interconnections between phase oscillators. The sequence of bifurcations, which accompany increasing of the strength of the global coupling is determined. Regions of multistability existance are defined.