удвоения периода

DYNAMIC REGIMES AND MULTISTABILITY IN THE SYSTEM OF NON- SYMMETRICALLY COUPLED TWO-DIMENSIONAL MAPS WITH PERIOD- DOUBLING AND NEIMARK–SACKER BIFURCATIONS

The phenomenon of multistability in the system of coupled universal two-dimensional maps which shows period-doubling and Neimark–Sacker bifurcations is investigated. The decreasing of possible coexisting attractors number, the evolution of the attractor basins, the disappearance of hyperchaos and three-dimensional torus while putting coupling asymmetryare exposed.