ESTIMATION OF CHARACTERISTICS OF SELF-OSCILLATING TIME-DELAY SYSTEMS IN PERIODIC REGIME
Cite this article as:
Ponomarenko V. I., Prokhorov M. D., Seleznev Е. P. ESTIMATION OF CHARACTERISTICS OF SELF-OSCILLATING TIME-DELAY SYSTEMS IN PERIODIC REGIME. Izvestiya VUZ. Applied Nonlinear Dynamics, 2007, vol. 15, iss. 6, pp. 86-92. DOI: https://doi.org/10.18500/0869-6632-2007-15-6-86-92
A method is proposed for reconstructing time-delay systems in periodic regime of oscillations. The method is based on the analysis of these systems response to a weak periodic pulse driving. It is shown that proposed method with using of weak driving allows one to recover the delay time of a ring self-oscillating system with time-delayed feedback and to define the order of a model delay-differential equation.
1. Hale J.K., Lunel S.M.V. Introduction to Functional Differential Equations. New York: Springer, 1993.
2. Bunner M.J., Popp M., Meyer Th., Kittel A., Rau U., Parisi J. Recovery of scalar time-delay systems from time series // Phys. Lett. A. 1996. Vol. 211. P. 345.
3. Voss H., Kurths J. Reconstruction of non-linear time delay models from data by the use of optimal transformations // Phys. Lett. A. 1997. Vol. 234. P. 336.
4. Hegger R., Bunner M.J., Kantz H., Giaquinta A. Identifying and modeling delay feedback systems // Phys. Rev. Lett. 1998. Vol. 81. P. 558.
5. Bezruchko B.P., Karavaev A.S., Ponomarenko V.I., Prokhorov M.D. Reconstruction of time-delay systems from chaotic time series // Phys. Rev. E. 2001. Vol. 64. 056216.
6. Horbelt W., Timmer J., Voss H.U. Parameter estimation in nonlinear delayed feedback systems from noisy data // Phys. Lett. A. 2002. Vol. 299. P. 513.
7. Udaltsov V.S., Larger L., Goedgebuer J.P., Locquet A., Citrin D.S. Time delay identification in chaotic cryptosystems ruled by delay-differential equations // J. of Optical Technology. 2005. Vol. 72. P. 373.
8. Ortin S., Gutierrez J.M., Pesquera L., Vasquez H. Nonlinear dynamics extraction for time-delay systems using modular neural networks synchronization and prediction // Physica A. 2005. Vol. 351. P. 133.
9. Prokhorov M.D., Ponomarenko V.I., Karavaev A.S., Bezruchko B.P. Reconstruction of time-delayed feedback systems from time series // Physica D. 2005. Vol. 203. P. 209.
10. Рубаник В.П. Колебания квазилинейных систем с запаздыванием. М.: Наука, 1969.
11. Ringwood J.V., Malpas S.C. Slow oscillations in blood pressure via a nonlinear feedback model // Am. J. Physiol. Regulatory Integrative Comp. Physiol. 2001. Vol. 280. P. 1105.
12. Bocharov G.A., Rihan F.A. Numerical modelling in biosciences using delay differential equations // J. Comp. Appl. Math. 2000. Vol. 125. P. 183.
13. Bezruchko B.P., Dikanev T.V., Smirnov D.A. Role of transient processes for reconstruction of model equations from time series // Phys. Rev. E. 2001. Vol. 64. 036210.
14. Харкевич А.А. Борьба с помехами. М.: Наука, 1965.
15. Баскаков С.И. Радиотехнические цепи и сигналы. М.: Высшая школа, 2000.
16. Войшвилло Г.В. Усилительные устройства. М.: Радио и связь,1983.
BibTeX
author = {V. I. Ponomarenko and Mikhail Dmitrievich Prokhorov and Е. P. Seleznev},
title = {ESTIMATION OF CHARACTERISTICS OF SELF-OSCILLATING TIME-DELAY SYSTEMS IN PERIODIC REGIME},
year = {2007},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {15},number = {6},
url = {https://old-andjournal.sgu.ru/en/articles/estimation-of-characteristics-of-self-oscillating-time-delay-systems-in-periodic-regime},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2007-15-6-86-92},pages = {86--92},issn = {0869-6632},
keywords = {-},
abstract = {A method is proposed for reconstructing time-delay systems in periodic regime of oscillations. The method is based on the analysis of these systems response to a weak periodic pulse driving. It is shown that proposed method with using of weak driving allows one to recover the delay time of a ring self-oscillating system with time-delayed feedback and to define the order of a model delay-differential equation. }}