THE DYNAMIC BEHAVIOR OF GENETIC STRUCTURE AND POPULATION SIZE IN THE EVOLUTION MODELS OF LIMITED POPULATION
Cite this article as:
Frisman E. Y., Zhdanova О. L. THE DYNAMIC BEHAVIOR OF GENETIC STRUCTURE AND POPULATION SIZE IN THE EVOLUTION MODELS OF LIMITED POPULATION. Izvestiya VUZ. Applied Nonlinear Dynamics, 2006, vol. 14, iss. 1, pp. 98-112. DOI: https://doi.org/10.18500/0869-6632-2006-14-1-98-112
It has been shown in this work how the evolutionary change of alleles’ frequencies, which is accompanied by the growth of average population fitness, leads to chaotic and cyclic dynamics of population size. Then the possible mechanisms of appearance of complicate temporal organization of genetic biodiversity have been considered.
1. Рулье К.Ф. Жизнь животных по отношению к внешним условиям. М.: Наука, 1952.
2. Пианка Э. Эволюционная экология. М.: Мир, 1981. 400 с.
3. Дэвис Д.Е., Кристиан Дж. Популяционная рефляция у млекопитающих // Экология. 1976. No 1. С. 15.
4. Chitty D. The natural selection of self-regulatory behavior in animal populations // Proc. Ecol. Soc. Australia. 1967. Vol. 2. P. 51.
5. Шапиро А.П. К вопросу о циклах в возвратных последовательностях // Управление и информация. Вып. 3. Владивосток: ДВНЦ АН СССР, 1972. С. 96.
6. Шапиро А.П., Луппов С. П. Рекуррентные уравнения в теории популяционной биологии. М.: Наука, 1983. 132 с.
7. May R.M. Biological population obeying difference equations: stable points, stable cycles, and chaos // J. Theor. Biol. 1975. Vol. 51, No2. P. 511.
8. Ricker W.E. Stock and recruitment // Theor. J. Fish. Res. Bard. Can. 1954. Vol. ll, No5. P. 559.
9. Fisher R.A. The genetical theory of natural selection. Oxford: Clarendon Press, 1930.
10. Ратнер В.А. Математическая популяционная генетика. Новосибирск: Наука, 1977.
11. Gottlieb L.D. Genetic stability in a peripheral isolate of Stephanomeria exigua spp. coronaria that fluctuates in population size // Genetics. 1974. Vol. 76, No3. P.551.
12. Graines M.S., McClenaghay L.R., Rose R.R. Temporal patterns of allozymic variation in fluctuating populations in Microtus ochrogaster // Evolution. 1978. Vol. 32, No4. P.723.
13. Kingman J.F.C. A mathematical problem in population genetics // Proc. Can. Phill. Soc. 1961. Vol. 57. P. 574.
14. Witten M. Fitness and survival in logistic models // J.Theor. Biol. 1978. Vol. 74, No1. P. 23.
15. Фрисман Е.Я., Скалецкая Е.И. Странные аттракторы в простейших моделях динамики численности биол. популяций // Вестник ДВО РАН. 1994. No5/6. С. 97.
16. Евдокимов Е.В. Проблемы регулярного поведения и детерминированного хаоса в основных моделях популяционной динамики (Теория и эксперимент) // Автореф. дис... д-ра биол. наук. Красноярск, 1999.
17. Pianka E.R. On r- and K-selection // Amer. Natur. 1970. Vol. 104. P. 592.
18. Pianka E.R. Evolution ecology. New York: Harper and Row. 1974. 356 p.
19. Pianka E.R. On r- and K-selection // Reading Sociobiol. San Francisco, 1978. P. 45.
20. Graham J. Reproductive effect and r- and K-selection in two species of Lacuna (Gastropods: Prosobranchia) // Mar. Biol. 1977. Vol. 40, No3. P. 217.
21. Long Th., Long G. The effects of r- and K-selection on components of variance for two quantitative traits // Genetics. 1974. Vol. 76, No3. P. 567.
22. MacNaughton S.J. r- and K-selection in Tipha // Amer. Natur. 1975. Vol. 109, No961. P. 251.
23. Rougharden J. Density dependent natural selection // Ecology, 1971. Vol. 52. P. 453.
24. Charlesworth B. Selection in density-regulated populations // Ibid. P. 469.
25. Asmussen M.A. Regular and chaotic cycling in models of ecological genetics // Theoretical population biology. 1979. Vol. 16, No2. P. 172.
26. Birch L.C. Selection in Drosophila pseudob. in relat. to crow. // Evol. 1955. Vol. 9, No4. P. 160.
27. Chitty D. Population processes in the vole and their relevance to general theory // Canad. J. Zool. 1960. Vol. 38. P. 99.
28. Farmer J. Doyne, Ott Edward, Yorke James A. The dimension of chaotic attractors // Physica D7, North-Holland Publishing Company, 1983. P. 153.
29. Жданова О.Л., Фрисман Е.Я. Исследование динамики модели менделевской однолокусной полиаллельной популяции с экспоненциальным плотностно зависимым отбором // Дальневосточный математический журнал. 2004. Т. 5, No2.
BibTeX
author = {E. Ya. Frisman and О. L. Zhdanova},
title = {THE DYNAMIC BEHAVIOR OF GENETIC STRUCTURE AND POPULATION SIZE IN THE EVOLUTION MODELS OF LIMITED POPULATION},
year = {2006},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {14},number = {1},
url = {https://old-andjournal.sgu.ru/en/articles/the-dynamic-behavior-of-genetic-structure-and-population-size-in-the-evolution-models-of},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2006-14-1-98-112},pages = {98--112},issn = {0869-6632},
keywords = {-},
abstract = {It has been shown in this work how the evolutionary change of alleles’ frequencies, which is accompanied by the growth of average population fitness, leads to chaotic and cyclic dynamics of population size. Then the possible mechanisms of appearance of complicate temporal organization of genetic biodiversity have been considered. }}