RELATIONSHIP OF GENERALIZED AND PHASE SYNCHRONIZATION IN TWO UNIDIRECTIONALLY COUPLED CHAOTIC OSCILLATORS


Cite this article as:

Pavlov А. S. RELATIONSHIP OF GENERALIZED AND PHASE SYNCHRONIZATION IN TWO UNIDIRECTIONALLY COUPLED CHAOTIC OSCILLATORS. Izvestiya VUZ. Applied Nonlinear Dynamics, 2012, vol. 20, iss. 1, pp. 91-98. DOI: https://doi.org/10.18500/0869-6632-2012-20-1-91-98


The behavior of the boundary of generalized synchronization in two unidirectionally coupled chaotic oscillators depending on the value of the control parameter mismatch between interacting systems has been studied. Peculiarities in its behavior in the field of the relatively large values of the control parameter mistuning have been found. The character of this behavior and physical mechanisms resulting in the generalized synchronization regime onset in such systems have been explained by the analysis of the spectral compound of signal from response system.

DOI: 
10.18500/0869-6632-2012-20-1-91-98
Literature

1. Boccaletti S., Kurths J., Osipov G.V., Valladares D.L., Zhou C.S. The synchronization of chaotic systems // Physics Reports. 2002. Vol. 366. P. 1.

2. Короновский А.А., Москаленко О.И., Храмов А.Е. О применении хаотической синхронизации для скрытой передачи информации // УФН. 2009. T. 179, No 12, C. 1281.

3. Glass L. Synchronization and rhythmic processes in physiology // Nature. 2001. Vol. 410, No 6825. P. 277.

4. Трубецков Д.И., Короновский А.А., Храмов А.Е. Синхронизация распределенных электронно-волновых автоколебательных систем с обратной волной // Изв. вузов. Радиофизика. 2004. XLVII. No 5–6 C. 305.

5. Rulkov N.F., Sushchik M.M., Tsimring L.S., Abarbanel H.D.I. Generalized synchro-nization of chaos in directionally coupled chaotic systems // Phys. Rev. E. 1995. Vol. 51, No 2. P. 980.

6. Pikovsky A. S., Rosenblum M. G., Kurths J. Phase synchronization in regular and chaotic systems // Int. J. Bifurcation and Chaos. 2000. Vol. 10, No 10. P. 2291.

7. Parlitz U., Junge L., Lauterborn W., Kocarev L. Experimental observation of phase synchronization // Phys. Rev. E. 1996. Vol. 54. T. 2. P. 2115.

8. Pyragas K. Weak and strong synchronization of chaos // Phys. Rev. E. 1997. Vol. 56, No 5. P. 5183.

9. Abarbanel H.D.I., Rulkov N.F., Sushchik M. Generalized synchronization of chaos: The auxiliary system approach // Phys. Rev. E. 1996. Vol. 53, No 5. P. 4528.

10. Zheng Z., Hu G. Generalized synchronization versus phase synchronization // Phys. Rev. E. 2000. Vol. 62, No 6. C. 7882.

11. Hramov A.E., Koronovskii A.A., Moskalenko O.I. Generalized synchronization onset // Europhysics Letters. 2005. Vol. 72, No 6. P. 901.

12. Короновский А.А., Москаленко О.И., Храмов А.Е. Об установлении режима обобщенной синхронизации в хаотических осцилляторах // Письма в ЖТФ. 2006. T. 32. No 3. C. 40.

13. Короновский А.А., Куровская М.К., Москаленко О.И., Храмов А.Е. Два сценария разрушения режима хаотической фазовой синхронизации // ЖТФ. 2007. T. 77, No 1. C. 21.

14. Hramov A.E., Koronovskii A.A., Kurovskaуa M.K. Two types of phase synchronization destruction // Phys. Rev. E. 2007. Vol. 75. 036205.

15. Короновский А.А., Москаленко О.И., Храмов А.Е. Граница возникновения режима обобщенной синхронизации хаотических осцилляторов // Радиотехника и электроника. 2007. T. 52, No 8. C. 949.

16. Москаленко О.И. Синхронизация спектральных компонент в системах с однонаправленной связью // ЖТФ. 2010 T. 80. No 8. C. 1.

 

Status: 
одобрено к публикации
Short Text (PDF): 

BibTeX

@article{Павлов-IzvVUZ_AND-20-1-91,
author = {А. S. Pavlov },
title = {RELATIONSHIP OF GENERALIZED AND PHASE SYNCHRONIZATION IN TWO UNIDIRECTIONALLY COUPLED CHAOTIC OSCILLATORS},
year = {2012},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {20},number = {1},
url = {https://old-andjournal.sgu.ru/en/articles/relationship-of-generalized-and-phase-synchronization-in-two-unidirectionally-coupled},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2012-20-1-91-98},pages = {91--98},issn = {0869-6632},
keywords = {Chaotic oscillators,generalized synchronization,phase coherence,Fourier spectra.},
abstract = {The behavior of the boundary of generalized synchronization in two unidirectionally coupled chaotic oscillators depending on the value of the control parameter mismatch between interacting systems has been studied. Peculiarities in its behavior in the field of the relatively large values of the control parameter mistuning have been found. The character of this behavior and physical mechanisms resulting in the generalized synchronization regime onset in such systems have been explained by the analysis of the spectral compound of signal from response system. }}