ДИНАМИКА АМПЛИТУД ВЕРОЯТНОСТИ В ВОДОРОДОПОДОБНОМ АТОМЕ ПОД ДЕЙСТВИЕМ СИЛЬНОГО ПЕРЕМЕННОГО ЭЛЕКТРИЧЕСКОГО ПОЛЯ ЭЛЕКТРОМАГНИТНОЙ ВОЛНЫ С УЧЕТОМ ПЕРЕХОДОВ В КОНТИНУУМ
Образец для цитирования:
Исследована динамика заселенностей уровней 4s и 3p атома водорода при действии сильного лазерного одночастотного линейно поляризованного поля в условиях одно-, двух- и трехфотонного резонанса, а также при достаточно большой отстройке частоты поля от частоты перехода без использования теории возмущений и приближения медленно меняющихся заселенностей. Показано, что существует низкочастотная модуляция оптических колебаний, частота которой при некоторых значениях амплитуды поля обращается в нуль. Для перехода 3s ↔ 2p исследована динамика заселенностей дискретных уровней 3s и 2p, а также состояний в континууме, связанных с уровнем 3s оптическим переходом. Продемонстрированы когерентные осцилляции заселенности континуальных уровней.
1. Wolf A. Laser-stimulated formation and stabilization of antihydrogen atoms //Hyperfine Interact. 1993. Vol. 76. P. 189.
2. Borneis S., Bosch F., Engel T., Jung M., et al. Laser-stimulated two-step recombination of highly charged ions and electrons in a storage ring // Phys. Rev. Lett. 1994. Vol. 72, P. 207.
3. Schramm U., Wolf A., Scheussler T., Habs D., Schwalm D., Uwira O., Linkemann J. and Mueller A. Laser-induced electron–ion recombination used to study enhanced spontaneous recombination during electron cooling // Hyperfine Interactions. 1997. Vol. 108. P. 273.
4. Schiibler T., Schramm U., Grieser M., Habs D., Rider T., Schwalm D., Wolf A. Laser induced two-step recombination for the study of Rydberg states in highly charged ions// Nuclear Instruments and Methods in Physics Research B. 1995. Vol. 98. P. 146.
5. Asp S., Schucha R., Dewitt D.R., Biedermann C., Gao H., Zong W., Andler G., Justiniano E. Laser-induced recombination of D+ // Nuclear Instruments and Methods in Physics Research B. 1996. Vol. 117. P. 31.
6. Ritchie B. Laser probe of the atomic ionization continuum: Stimulated recombination into an excited state // Phys Rev.A. 1984. Vol. 30. P. 1849.
7. Leone C., Bivona S., Burlon R., and Ferrante G. Strong-field and plasma aspects of multiphoton radiative recombination // Phys. Rev. A. 2002. Vol. 66. P. 051403.
8. Fill E. Gain on free-bound transitions by stimulated radiative recombination // Phys. Rev. Lett. 1986. Vol. 56. P. 1687.
9. Schlusser T., Schramm U., Ruter T., Broude C. et al. Laser- stimulated recombination spectroscopy for the study of long-range interactions in highly charged Rydberg ions // Phys. Rev. Lett. 1995. Vol. 75. P. 802.
10. Wolf A., Gwinner G., Linkemann J., Saghiri A.A. et al. Recombination in electron coolers // Nucl. Instr. and Meth. in Phys. Research A. 2000. Vol. 441. P. 183.
11. Madsen L. B., Lambropoulos P. Scaling of hydrogenic atoms and ions interacting with laser fields: Positronium in a laser field//Phys. Rev.A. 1999. V. 59, P. 4574.
12. Gwinner G., Hoffknecht A., Bartsch T., Beutelspacher M., Eklow N. et al. Influence of magnetic fields on electron–ion recombination at very low energies //Phys. Rev. Lett. 2000. Vol. 84. P. 4822.
13. Hahn Y. Electron–ion recombination process – an overview // Rep. Prog. Phys. 1997. Vol. 60. P. 691.
14. Keldysh L.V. Ionization in the field of strong electromagnetic wave // Zh. Eksp. Teor. Fiz. 1964. Vol. 47. P. 1945; Sov. Phys. JETP. 1965. Vol. 20. P. 1307.
15. Faisal F.H.M. Multiple absorption of laser photons by atoms //J. Phys. B. 1973. Vol. 6. P. L89.
16. Reiss H.R. Effect of an intense electromagnetic field on a weakly bound system //Phys. Rev. A. 1980. Vol. 22. P. 1786.
17. Alaterre P., Matte J.-P., Lamoureux M. Ionization and recombination rates in non-Maxwellian plasmas // Phys. Rev.A. 1986. Vol. 34. P. 1578.
18. Amoretti M. et al. Production and detection of cold antihydrogen atoms // Nature. 2002. Vol. 419. P. 456.
19. Gabrielse G. et al. Background-free observation of cold antihydrogen with fieldionization analysis of its states // Phys. Rev. Lett. 2002. Vol. 89. P. 213401.
20. Bertsche W., Boston A., Bowe P.D., Cesar C.L. et al. The ALPHA experiment: a cold antihydrogen trap//AIP Conference Proceedings. 2005. Vol. 796, P. 301.
21. Меньшиков Л.И., Ландуа Р. Состояние исследований по холодному антиводороду//УФН. 2003. Т. 173, No 3. C. 233.
22. Ryabinina M.V., Melnikov L.A. Laser-induced antiproton-positron recombination in traps // Nuclear Instruments and Methods in Physics Research B. 2004. Vol. 214. P. 35.
23. Wolf A. Recombination physics // Nucl. Phys. A. 2001. Vol. 692. P. 153.
24. Pahl A., Eikema K.S.E., Walz J., Hansch T.W. Combined trap for laser-stimulated recombination // Hyperfine Interactions. 2000. Vol. 127. P. 181.
25. Eikema K.S.E., Walz J., and Hansch T.W. Continuous coherent Lyman-alpha excitation of atomic hydrogen // Phys. Rev. Lett. 2001. Vol. 86. P. 5679.
26. Storry C. H., Speck A., Le Sage D., Guise N. et al. First laser-controlled antihydrogen production // Phys. Rev. Lett. 2004. Vol. 93. P. 263401.
27. Laarmann T., de Castro A. R., Gurtler P., Laasch W., Schulz J., Wabnitz H. and Moller T. Photoionization of helium atoms irradiated with intense vacuum ultraviolet free-electron laser light. Part I. Experimental study of multiphoton and single-photon processes // Phys. Rev.A. 2005. Vol. 72. P. 023409.
28. Charalambidis D., Tzallas P., Papadogiannis N.A., Nikolopoulos L.A.A., Benis E.P. and Tsakiris G.D. Comment on «Photoionization of helium atoms irradiated with intense vacuum ultraviolet free-electron laser light. Part I. Experimental study of multiphoton and single photon processes»// Phys. Rev. A. 2006. Vol. 74. P. 037401.
29. Laarmann T., de Castro A.R., Gurtler P., Laasch W., Schulz J., Wabnitz H. and Moller T. Reply to «Comment on ‘Photoionization of helium atoms irradiated with intense vacuum ultraviolet free-electron laser light. Part I. Experimental study of multiphoton and single photon processes’» //Phys. Rev. A. 2006. Vol. 74. P. 037402.
30. Moshammer R., Jiang Y. H., Foucar L. et al. Few-photon multiple ionization of Ne and Ar by strong free-electron-laser pulses // Phys. Rev. Lett. 2007. Vol. 98. P. 203001.
31. Zhang C., Liu X., Ding P. and Qi Y. The enhancement of efficiency of highorder harmonic in intense laser field based on asymptotic boundary conditions and symplectic algorithm // J. Math. Chem. 2006. Vol. 39. P. 451.
32. Benis E. P., Charalambidis D., Kitsopoulos T. N., Tsakiris G.D., and Tzallas P. Twophoton double ionization of rare gases by a superposition of harmonics // Phys. Rev. A. 2006. Vol. 74. P. 051402(R).
33. Uiberacker M., Uphues Th., Schultze M., Verhoef A. J. et al. Attosecond real-time observation of electron tunnelling in atoms // Nature. 2007. Vol. 446, doi:10.1038/ nature05648.
34. Corkum P. B. and Krausz F. Attosecond science//Nature physics. 2007. Vol. 3. P. 381.
35. Girju M. G., Hristov K., Kidun O. and Bauer D. Nonperturbative resonant strong field ionization of atomic hydrogen // J. Phys. B: At. Mol. Opt. Phys. 2007. Vol. 40. P. 4165.
36. Klews M. and Schweizer W. Three-dimensional kicked hydrogen atom // Phys. Rev. A. 2001. Vol. 64. P. 053403.
37. Duchateau G., Cormier E., Bachau H., Gayet R. Coulomb–Volkov approach of atom ionization by intense and ultrashort laser pulses // Phys. Rev. A. 2001. Vol. 63. P. 053411.
38. Duchateau G., Cormier E., Gayet R. A simple non-perturbative approach of atom ionisation by intense and ultra-short laser pulses // Eur. Phys. J. 2000. Vol. D11. P. 191.
39. Kaminski J.Z., Ehlotzky F. Optimized X-ray generation by electron–ion recombination in the presence of powerful laser fields // Optics Communications. 2004. Vol. 234. P. 343.
40. Gusev A.A., Chuluunbaatar O., Vinitsky S.I., Kaschiev M.S. High accuracy splitting algorithms for the time-dependent Schrodinger equation with a train of laser pulses ̈ // Proc. SPIE. 2004. Vol. 5476. P. 5476-14.
41. Ryabinina M.V., Melnikov L.A. Phase-sensitive ionization and recombination of antihydrogen atom using zero-duration high intensity laser pulse //AIP Conference Proc. 2005. Vol. 796. P. 325.
42. Андреев А.В. Взаимодействие атома со сверхсильными лазерными полями // ЖЭТФ. 1999. Т. 116, No 3(9). C. 793.
43. Bordyug N.V. and Krainov V.P. Dynamic resonances in ultra-short laser pulses // Laser Phys.Lett.2007. Vol. 4, No 6. P. 418.
44. Hu S.X. and Collins L.A. Phase control of the inverse above-threshold-ionization process with few-cycle pulses // Phys. Rev. A. 2004. Vol. 70. P. 035401.
45. Giraud S., Piraux B. et al. Strong field atomic ionization dynamics: role of the Coulomb potential studied by means of a model // Proc. SPIE. 2006. Vol. 6165. P. 616513.
46. Волкова Е.А., Попов А.М., Тихонов М.А., Тихонова О.В. Атом в лазерном импульсе высокой интенсивности: эффект стабилизации и приближение сильного поля // ЖЭТФ. 2007. Т. 132. Вып. 3. С. 596.
47. Волкова Е.А., Гридчин В.В., Попов А.М., Тихонова О.В. Туннельная ионизация атома водорода в лазерном импульсе короткой и ультракороткой длительности // ЖЭТФ. 2006. Т. 129. Вып. 1. С. 48.
48. Ландау Л.Д., Лифшиц Е.М. Квантовая механика. М.: Наука, 1989.
49. Летохов В.С., Чеботаев В.П. Принципы нелинейной лазерной спектроскопии. М.: Наука, 1974.
50. Ryabinina M.V., Melnikov L.A. Coherent effects in free-bound transitions in hydrogen/antihydrogen atom under the action of ultra-short strong-field laser pulse // Proc. SPIE. 2007. Vol. 6537. P. 653705.
BibTeX
author = {Мария Викторовна Рябинина and Леонид Аркадьевич Мельников },
title = {ДИНАМИКА АМПЛИТУД ВЕРОЯТНОСТИ В ВОДОРОДОПОДОБНОМ АТОМЕ ПОД ДЕЙСТВИЕМ СИЛЬНОГО ПЕРЕМЕННОГО ЭЛЕКТРИЧЕСКОГО ПОЛЯ ЭЛЕКТРОМАГНИТНОЙ ВОЛНЫ С УЧЕТОМ ПЕРЕХОДОВ В КОНТИНУУМ},
year = {2008},
journal = {Известия высших учебных заведений. Прикладная нелинейная динамика},
volume = {16},number = {1},
url = {https://old-andjournal.sgu.ru/ru/articles/dinamika-amplitud-veroyatnosti-v-vodorodopodobnom-atome-pod-deystviem-silnogo-peremennogo},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2008-16-1-99-114},pages = {99--114},issn = {0869-6632},
keywords = {-},
abstract = {Исследована динамика заселенностей уровней 4s и 3p атома водорода при действии сильного лазерного одночастотного линейно поляризованного поля в условиях одно-, двух- и трехфотонного резонанса, а также при достаточно большой отстройке частоты поля от частоты перехода без использования теории возмущений и приближения медленно меняющихся заселенностей. Показано, что существует низкочастотная модуляция оптических колебаний, частота которой при некоторых значениях амплитуды поля обращается в нуль. Для перехода 3s ↔ 2p исследована динамика заселенностей дискретных уровней 3s и 2p, а также состояний в континууме, связанных с уровнем 3s оптическим переходом. Продемонстрированы когерентные осцилляции заселенности континуальных уровней. }}