ORIGIN OF INTERMITTENCY IN SINGULAR HAMILTONIAN SYSTEMS
Cite this article as:
Slipushenko S. V., Tur А. V., Yanovsky V. V. ORIGIN OF INTERMITTENCY IN SINGULAR HAMILTONIAN SYSTEMS. Izvestiya VUZ. Applied Nonlinear Dynamics, 2010, vol. 18, iss. 4, pp. 91-110. DOI: https://doi.org/10.18500/0869-6632-2010-18-4-91-110
In the paper we studied properties of conservative singular maps. It was found that under some conditions the intermittency without chaotic phases can be observed in these maps. The alternative mechanism of the intermittency origin in Hamiltonian singular systems was considered. Its general properties were discussed. We studied special properties of phase space structure in these systems. It is shown that Hamiltonian intermittency can be characterized by zero Lyapunov exponents. It gives us the possibility to classify it as pseoudochaos dynamics.
1. Kolmogorov A.N. La theorie generale des systemes dynamiques et la mecanique classique // Amsterdam Congress 1. 1954. P. 315.
2. Арнольд В.И. Малые знаменатели и проблема устойчивости движения в классической и небесной механике // Усп. мат. наук. 1963. Т. 18. С. 85.
3. Moser J.K. Stable and random motions in dynamical systems: with special emphasis on celestial mechanics. Princeton: Princeton Univ. Press Ann. of Math. Studies, 1973.
4. Чириков В.В. Нелинейный резонанс. НГУ, 1977.
5. Arnold V.I., Avez A. Ergodic Problems of Classical Mechanics. New York: W.A. Benjamin, 1968.
6. Lichtenberg A.J. and Lieberman M.A. Regular and Stochastic Motion. New York: Springer, 1983.
7. Мозер Ю. Лекции о гамильтоновых системах. М.: Мир, 1973.
8. Fan R., Zaslavsky G.M. Pseudochaotic dynamics near global periodicity // Communications in Nonlinear Science and Numerical Simulation. 2007. Vol. 12. P. 1038.
9. Scott A.J., Holmesa C.A., Milburnb G.J. Hamiltonian mappings and circle packing phase spaces // Physica D: Nonlinear Phenomena. 2001. Vol. 155. P. 34.
10. Заславский Г.М., Сагдеев Р.З., Усиков Д.А., Черников А.А. Слабый хаос и квазирегулярные структуры. М.: Наука, 1964.
11. Zaslavsky G.M., Edelman M. Pseudochaos // arXiv:nlin/0112033v2, 2001.
12. Grebogi C., Ott E., Yorke J.A. Fractal basin boundaries, long-lived chaotic transients, and unstable-unstaible pair bifurcation // Phys. Rev. Lett. 1983. Vol. 50. P. 935.
13. Синай Я.Г. Введение в эргодическую теорию. М.: Фазис, 1996.
14. Розенфельд Б.А., Сергеева Н.Д. Стереографическая проекция. М.: Наука, 1973.
15. Кузнецов С.П. Динамический хаос. М.: Физматлит, 2001.
16. Шустер Г. Детерминированный хаос: Введение. М.: Мир, 1988.
17. Slipushenko S.V., Tur A.V., Yanovsky V.V. Intermittency without chaotic phases // Functional Materials. 2006. Vol. 13, No 4. P. 551.
18. Слипушенко С.В., Тур А.В., Яновский В.В. Конкуренция перемежаемостей // Изв. вузов. Прикладная нелинейная динамика. 2008. Т. 16, No 4. С. 3.
19. Шварц А.С. Квантовая теория поля и топология. М.: Наука, Гл. ред. физ.-мат. лит, 1989.
20. Shenker S.J. Scaling behavior in a map of a circle into itself: Empirical results // Physica 5D. 1982. P. 405.
BibTeX
author = {S. V. Slipushenko and А. V. Tur and V. V. Yanovsky},
title = {ORIGIN OF INTERMITTENCY IN SINGULAR HAMILTONIAN SYSTEMS},
year = {2010},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {18},number = {4},
url = {https://old-andjournal.sgu.ru/en/articles/origin-of-intermittency-in-singular-hamiltonian-systems},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2010-18-4-91-110},pages = {91--110},issn = {0869-6632},
keywords = {Dynamic chaos,Hamiltonian system,intermittency,singularity.},
abstract = {In the paper we studied properties of conservative singular maps. It was found that under some conditions the intermittency without chaotic phases can be observed in these maps. The alternative mechanism of the intermittency origin in Hamiltonian singular systems was considered. Its general properties were discussed. We studied special properties of phase space structure in these systems. It is shown that Hamiltonian intermittency can be characterized by zero Lyapunov exponents. It gives us the possibility to classify it as pseoudochaos dynamics. }}