ALTERNATIVE METHODS FOR SPIRAL WAVE CHAOS CONTROL AND SUPPRESSING IN CARDIAC MODELS


Cite this article as:

Pavlov Е. А., Zhuzhoma E. V., Osipov G. V. ALTERNATIVE METHODS FOR SPIRAL WAVE CHAOS CONTROL AND SUPPRESSING IN CARDIAC MODELS. Izvestiya VUZ. Applied Nonlinear Dynamics, 2015, vol. 23, iss. 4, pp. 40-57. DOI: https://doi.org/10.18500/0869-6632-2015-23-4-40-57


We investigate elements, which describes the Luo–Rudy model equations. We analyze the influence of different parameters for the spiral wave chaos properties.We analyze the effect of (i) constant current influence, (ii) calcium channels blocking, (iii) potassium channels activating. We present the histograms of the middle frequencies of elements, when the spiral wave chaos takes place. We describe the ability of using complex impact for suppressing spiral wave chaos and the ability of using high-frequency signal with exponential reverse amplitude for suppressing (which is more really for using in in-vitro experiments).

 

Download full version

DOI: 
10.18500/0869-6632-2015-23-4-40-57
Literature

1. Jalife J., Gray R.A. Drifting vortices of electrical waves underlie ventricular fibrillation in the rabbit heart // Acta. Physiol. Scand. 1996. Vol. 157. P. 123.

2. Jalife J., Gray R.A., Morley G.E., Davidenko J.M. Self-organization and the dynamical nature of ventricular fibrillation // Chaos. 1998. Vol. 8. P. 79.

3. Panfilov A.V. Spiral breakup as a model of ventricular fibrillation // Chaos. 1998. Vol. 8. P. 57.

4. Witkowski F.X., Leon L.J., Penkoske P.A., Giles W.R., Spano M.L., Ditto W.L., Winfree A.T. Spatiotemporal evolution of ventricular fibrillation // Nature. 1998. Vol. 392. P. 78.

5. Guo W., Quio C., Zhang Z., Ouyang Q., Wang H. Spontaneous suppression of spiral turbulence based on feedback strategy // Phys. Rev. E. 2010. Vol. 81. 056214.

6. Sakurai T., Mihaliuk E., Chirila F., Showalter K. Design and control of wave propagation patterns in excitable media // Science. 2002. Vol. 296. P. 2009.

7. Vilas C., Garcia M.R., Banga J.R., Alonso A.A. Robust feedback control of distributed chemical reaction systems // Chem. Eng. Sc. 2007. Vol. 62. P. 2941.

8. Yoneshima H., Konishi K., Kokame H. Symposium on Nonlinear Theory and its applications // Chaos. 2008. Vol. 21. 023101.

9. Alonso S., Sagues F., Mikhailov A.S. Taming Winfree turbulence of scroll waves in excitable media // Science. 2003. Vol. 299. P. 1722.

10. Kovaleva N. A., Loskutov A. Yu. Stabilization of diffusion-induced chaotic processes// Doklady–Physical Chemistry. 2004. Vol. 396, №1. P. 105.

11. Stamp A.T., Osipov G.V., Collins J.J. Suppressing arrhythmias in cardiac models using overdrive pacing and calcium channel blockers // Chaos. 2002. Vol. 12. P. 931.

12. Osipov G.V., Collins J.J. Using weak impulses to suppress traveling waves in excitable media // Phys. Rev. E. 1999. Vol. 60. P. 54.

13. Zhang H., Hu B., Hu G. Suppression of spiral waves and spatiotemporal chaos by generating target waves in excitable media // Phys. Rev. E. 2003. Vol. 68. 026134.

14. Loskutov A. Yu., Cheremin R. V., Vysotsky S. A. Stabilization of turbulent dynamics in excitable media by an external point action// Doklady–Physics. 2005. Vol. 50, №10. P. 490.

15. Loskutov A. Yu., Vysotsky S. A. New approach to the defibrillation problem: Suppression of the spiral wave activity of cardiac tissue // Journal of Experimental and Theoretical Physics Letters. 2006. Vol. 84, №9. P. 524.

16. Allessie M., Kirchhof C., Scheffer G.J., Chorro F., Brugada J. Regional control of atrial fibrillation by rapid pacing in conscious dogs // Circulation. 1991. Vol. 84. P. 1689.

17. Capucci R.A., Ravelli F., Nollo G., Montenero A.S., Biffi M., Villani G.Q. Capture window in human atrial fibrillation // J. Cardiovasc. Electrophysiol. 1999. Vol. 10. P. 319.

18. Daoud E.G., Pariseau B., Niebauer M., Bogun F., Goyal F., Harvey M., Man K.C., Strickberger S.A., Morady F. Response of type I atrial fibrillation to atrial pacing in humans // Circulation. 1996. Vol. 94. P. 1036.

19. Kalman J. M., Olgin J. E., Karch M. R., Lesh M. D. Regional entrainment of atrial fibrillation in man // J. Cardiovasc. Electrophysiol. 1996. Vol. 7. P. 867.

20. Kirchhof C., Chorro F., Scheffer G.J., Brugada J., Konings K., Zetelaki Z., Allessie M. Regional entrainment of atrial fibrillation studied by high-resolution mapping in open-chest dogs // Circulation. 1993. Vol. 88. P. 736.

21. KenKnight B.H., Bayly P.V., Gerstle R.J., Rollins D.L., Wolf P.D., Smith W.M., Ideker R.E. Regional capture of fibrillating ventricular myocardium: evidence of an excitable gap // Circ. Res. 1995. Vol. 77. P. 849.

22. Bassett A.L., Chakko S.,Epstein M. Are calcium antagonists proarrhythmic? // J. Hypertens. 1997. Vol. 15. P. 915.

23. Chay T.R. Why are some antiarrhythmic drugs proarrhythmic? Cardiac arrhythmia study by bifurcation analysis // J. Electrocardiol. 1995. Vol. 28. P. 191.

24. Sakaguchi H., Nakamura Y. Sample entropy of GPi neurons dependence on the level of alertness in 6OHDA rats // J. of the Phys. Soc. Jap. 2010. Vol. 79. 074802.

25. Tandri H., Weinberg S.H., Chang K.C., Zhu R., Trayanova N.A., Tung L., Berger R.D. Reversible cardiac conduction block and defibrillation with high-frequency electric field // Sc. Trans. Med. 2011. Vol. 102. 102ra96.

26. Luther S., Fenton F. H., Kornreich B.G., Squires A., Bittihm P. Low-energy control of electrical turbulence in the heart // Nature. 2011. Vol. 7355. P. 235.

27. Sridhar S., Duy-Manh L., Yun-Chieh M., Sinha S., Pik-Yin L., Chan C.K. Suppression of cardiac alternans by alternating-period-feedback stimulations //Phys. Rev. E. 2013. Vol. 87. 042712.

28. Luo C.H., Rudy Y. A model of the ventricular cardiac action potential // Circ. Res. 1991. Vol. 68. P. 1501.

29. Krinsky V.I., Agladze K.I.Interaction of rotating waves in an active chemical medium // Physica D. 1983. Vol. 8. P. 50.

30. Lee K.J. Wave pattern selection in an excitable system // Phys. Rev. Let. 1997. Vol. 79. P. 2907.

31. Xie F., Qu Z., Weiss J.N., Garfinkel A. Interactions between stable spiral waves with different frequencies in cardiac tissue // Phys. Rev. E 1999. Vol. 59. P. 2203.

32. Zykov V.S. Spiral waves in two-dimensional excitable media // Ann. N.Y. Acad. Sci. 1990. Vol. 591. P. 75

Status: 
одобрено к публикации
Short Text (PDF): 
Full Text (PDF): 

BibTeX

@article{Павлов -IzvVUZ_AND-23-4-40,
author = {Е. А. Pavlov and E. V. Zhuzhoma and G. V. Osipov },
title = {ALTERNATIVE METHODS FOR SPIRAL WAVE CHAOS CONTROL AND SUPPRESSING IN CARDIAC MODELS},
year = {2015},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {23},number = {4},
url = {https://old-andjournal.sgu.ru/en/articles/alternative-methods-for-spiral-wave-chaos-control-and-suppressing-in-cardiac-models},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2015-23-4-40-57},pages = {40--57},issn = {0869-6632},
keywords = {Cardiac dynamics,Luo–Rudy model,spiral waves,fibrillation,overdrive pacing,spiral chaos.},
abstract = {We investigate elements, which describes the Luo–Rudy model equations. We ana￾lyze the influence of different parameters for the spiral wave chaos properties.We analyze the effect of (i) constant current influence, (ii) calcium channels blocking, (iii) potassium channels activating. We present the histograms of the middle frequencies of elements, when the spiral wave chaos takes place. We describe the ability of using complex impact for suppressing spiral wave chaos and the ability of using high-frequency signal with exponential reverse amplitude for suppressing (which is more really for using in in-vitro experiments).   Download full version }}