CHAOTIC DYNAMICS IN THE SYSTEMS OF COUPLING NONAUTONOMOUS OSCILLATORS WITH RESONANCE AND NONRESONANCE COMMUNICATOR OF THE SIGNAL


Cite this article as:

Kuznetsov A. P., Kuznetsov S. P., Pikovski A. S., Turukina L. V. CHAOTIC DYNAMICS IN THE SYSTEMS OF COUPLING NONAUTONOMOUS OSCILLATORS WITH RESONANCE AND NONRESONANCE COMMUNICATOR OF THE SIGNAL. Izvestiya VUZ. Applied Nonlinear Dynamics, 2007, vol. 15, iss. 6, pp. 75-85. DOI: https://doi.org/10.18500/0869-6632-2007-15-6-75-85


Chaotic dynamics in the systems of coupling nonautonomous van der Pol oscillators with resonance and nonresonance communicator of the signal is considered. For the both models phase map for the period of the external force are show hyperbolic attractor of the Smale–Williams type. In these models features of chaotic dynamics investigated depending on type of the communicator of the signal.

Key words: 
-
DOI: 
10.18500/0869-6632-2007-15-6-75-85
Literature

1. Синай Я.Г. Стохастичность динамических систем. В кн. Нелинейные волны. М.: Наука, 1979, 192 с.

2. Гукенхеймер Дж., Холмс П. Нелинейные колебания, динамические системы и бифуркации векторных полей. М.; Ижевск: Институт компьютерных исследований. 2002. 559 с.

3. Devaney R.L. An Introduction to Chaotic Dynamical Systems. NY: Addison-Wesley, 1989.

4. Shilnikov L. Mathematical problems of nonlinear dynamics: a tutorial // Int. J. of Bif. & Chaos. 1997. Vol. 7, No 9. P. 1353.

5. Каток А.Б., Хасселблат Б. Введение в современную теорию динамических систем. Пер. с англ. М.: Факториал. 1999, 768 с.

6. Afraimovich V. and Hsu S.-B. Lectures on chaotic dynamical systems. AMS/IP Studies in Advanced Mathematics, Vol.28. American Mathematical Society, Providence RI, International Press, Somerville, MA, 2003.

7. Ott E. Chaos in Dynamical Systems. Cambridge University Press, 1993.

8. Анищенко В.С. и д.р. Нелинейные эффекты в хаотических и стохастических системах. М.; Ижевск: Институт компьютерных исследований. 2003.

9. Kuznetsov S.P. Example of a physical system with a hyperbolic attractor of a Smale–Williams type // Phys. Rev. Lett. 2005. Vol. 95. P. 44101.

10. Belykh V., Belykh I. and Mosekilde E. The hyperbolic Plykin attractor can exist in neuron models // Int. J. of Bif. & Chaos. 2005. Vol. 15, No 11. P. 3567.

11. Кузнецов С.П., Селезнев Е.П. Хаотическая динамика в физической системе со странным аттрактором типа Смейла–Вильямса // ЖТЭФ. 2006. Вып. 129, No 2. C. 400.

12. Кузнецов С.П., Сатаев И.Р. Проверка устойчивости гиперболичности хаотического аттрактора в системе связанных неавтономных осцилляторов ван дер Поля // Изв. вузов. Прикладная нелинейная динамика. 2006. Т. 14, No 5. С. 3.

13. Кузнецов С.П. Динамический хаос. М.: Физматлит, 2006. 356 с.

Status: 
одобрено к публикации
Short Text (PDF): 
Full Text (PDF): 

BibTeX

@article{Кузнецов-IzvVUZ_AND-15-6-75,
author = {A. P. Kuznetsov and Sergey P. Kuznetsov and Arkady S. Pikovski and L. V. Turukina},
title = {CHAOTIC DYNAMICS IN THE SYSTEMS OF COUPLING NONAUTONOMOUS OSCILLATORS WITH RESONANCE AND NONRESONANCE COMMUNICATOR OF THE SIGNAL},
year = {2007},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {15},number = {6},
url = {https://old-andjournal.sgu.ru/en/articles/chaotic-dynamics-in-the-systems-of-coupling-nonautonomous-oscillators-with-resonance-and},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2007-15-6-75-85},pages = {75--85},issn = {0869-6632},
keywords = {-},
abstract = {Chaotic dynamics in the systems of coupling nonautonomous van der Pol oscillators with resonance and nonresonance communicator of the signal is considered. For the both models phase map for the period of the external force are show hyperbolic attractor of the Smale–Williams type. In these models features of chaotic dynamics investigated depending on type of the communicator of the signal. }}