COMPETITION IN THE TWOCOMPONENT MODEL OF THE IMMUNE TCELL ENSEMBLE
Cite this article as:
Ivanchenko М. V. COMPETITION IN THE TWOCOMPONENT MODEL OF THE IMMUNE TCELL ENSEMBLE. Izvestiya VUZ. Applied Nonlinear Dynamics, 2010, vol. 18, iss. 3, pp. 33-45. DOI: https://doi.org/10.18500/0869-6632-2010-18-3-33-45
We study the process of competition in the twocomponent model of the immune Tcells ensemble that underpins the selection mechanism of the most efficient Tcell species (clonotypes). We demonstrate the absence of periodic oscillations, determine the regions of coexistence, partial and mutual extinction of clonotypes. Applicability of the mean field approximation is analyzed. The biological implications of the results are discussed.
1. Arecchi F.T. et al. Pattern formation and competition in nonlinear optics // Physic Reports. 1999. Vol. 318. P. 1.
2. Afraimovich V.S., Nekorkin V.I., Osipov G.V., Shalfeev V.D. Stability, Structures and Chaos in Nonlinear Synchronization Networks. Singapore: World Scientific, 1994.
3. Kuramoto Y. Chemical oscillations and turbulence. Tokio: Springer, 1984.
4. Короновский А.А., Трубецков Д.И. Нелинейная динамика в действии. Саратов: Изд-во ГосУНЦ «Колледж», 2002.
5. Murray J.D. Mathematical Biology. Berlin Heidelberg: Springer-Verlag, 2002.
6. Rabinovich M.I., Varona P., Selverston A.I. et al. Dynamical principles in neuro-science // Rev. Mod. Phys. 2006. Vol. 78. P. 1213.
7. Nekorkin V.I., Shapin D.S., Dmitrichev A.S. et al. Heteroclinic contours and self-replicated solitary waves in a reaction-diffusion lattice with complex threshold excitation // Physica D. 2008. Vol. 237. P. 2463.
8. Jameson S.C. Maintainting the norm: T-cell homeostasis // Nature Reviews Immunology. 2002. Vol. 2. P. 547.
9. Perelson A. and Weisbuch G. Immunology for physicists // Reviews of Modern Physics. 1997. Vol. 69. P. 1219.
10. Freitas A.A. and Rocha B.B. Lymphocyte lifespans: homeostasis, selection and competition // Immun. Today. 1993. Vol. 14. P. 25.
11. de Boer R. and Perelson A. Competitive control of the self-renewing T cell repertoire // International Immunology. 1997. Vol. 9. P. 779.
12. Stirk E.R., Molina-Paris C., and van den Berg H. Stochastic niche structure and diversity maintenance in the T cell repertoire // J. Theor. Biol. 2008. Vol. 255. P. 237.
13. Gillespie D.T. Stochastic simulation of chemical kinetics // Annu. Rev. Phys. Chem. 2007. Vol. 58. P. 35.
14. Stirk E., Lythe G., van den Berg H., Hurst G. and Molina-Paris C. The limiting conditional distribution in a stochastic model of T cell repertoire maintenance // Math. Biosciences, 2010 (in print).
BibTeX
author = {М. V. Ivanchenko},
title = {COMPETITION IN THE TWOCOMPONENT MODEL OF THE IMMUNE TCELL ENSEMBLE},
year = {2010},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {18},number = {3},
url = {https://old-andjournal.sgu.ru/en/articles/competition-in-the-twocomponent-model-of-the-immune-tcell-ensemble},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2010-18-3-33-45},pages = {33--45},issn = {0869-6632},
keywords = {competition,bifurcations,immune system.},
abstract = {We study the process of competition in the twocomponent model of the immune Tcells ensemble that underpins the selection mechanism of the most efficient Tcell species (clonotypes). We demonstrate the absence of periodic oscillations, determine the regions of coexistence, partial and mutual extinction of clonotypes. Applicability of the mean field approximation is analyzed. The biological implications of the results are discussed. }}