DISCRETE BREATHERS IN SCALAR DYNAMICAL MODELS ON THE PLANE SQUARE LATTICE


Cite this article as:

Bezuglova . S., Goncharov P. P., Gurov Y. V., Chechin G. М. DISCRETE BREATHERS IN SCALAR DYNAMICAL MODELS ON THE PLANE SQUARE LATTICE. Izvestiya VUZ. Applied Nonlinear Dynamics, 2011, vol. 19, iss. 3, pp. 89-103. DOI: https://doi.org/10.18500/0869-6632-2011-19-3-89-103


All symmetry related invariant manifolds, admitting localized vibrations, for dynamical models on plane square lattice were found by group­theoretical methods. Discrete breathers were constructed on these manifolds for the model with homogeneous potentials of interparticle interactions and their stability was studied. Nontrivial breather solutions which are not nonlinear normal modes by Rosenberg have been revealed for the above model despite it admits space­time separation of dynamical variables. Discrete breathers of the same type were also found in the system of linear coupled Duffing oscillators situated in sites of square lattice. Our approach for studying discrete breathers can be spread to different two­ and three­dimensional space­periodic dynamical models.

DOI: 
10.18500/0869-6632-2011-19-3-89-103
Literature

1. Aubry S. Breathers in nonlinear lattices: existence, linear stability and quantization // Physica D. 1997. Vol. 103. P. 201.

2. Flach S., Willis C.R. Discrete breathers // Physics Reports. 1997. Vol. 295. P. 181.

3. Aubry S. Discrete breathers: Localization and transfer of energy in discrete Hamiltonian nonlinear systems // Physica D. 2006. Vol. 216. P. 1.

4. Flach S., Gorbach A. Discrete breathers: Advances in theory and applications // Physics Reports. 2007. Vol. 467. P. 1.

5. Fischer F. Self-localized single-anharmonic vibrational modes in two-dimensional lattices // Ann. Physik. 1993. Vol. 2. P. 296.

6. Flach F., Kladko K., Willis C.R. Acoustic breathers in two-dimensional lattices // Phys. Rev. Lett. 1997 Vol. 78. P. 1207.

7. Kiselev S.A., Sievers A.J. Generation of intrinsic vibrational gap modes in three-dimensional ionic crystals // Phys. Rev. B. 1997. Vol. 55. P. 5755.

8. Kevrekidis P.G., Rasmussen K.O., Bishop A.R. Two-dimensional discrete breathers: Construction, stability, and bifurcations // Phys. Rev. E. 2000. Vol. 61. P. 2006.

9. Doi Y., Nakatani A. Structures of discrete breathers in two-dimensional Fermi–Pasta–Ulam lattices // Theor. Appl. Mech. Jpn. 2006. Vol. 55 P. 103.

10. Butt I.A., Wattis J.A.D. Discrete breathers in a two-dimensional Fermi–Pasta–Ulam lattice // J. Phys. A. Math. Gen. 2006. Vol. 39. P. 4955.

11. Butt I.A., Wattis J.A.D. Discrete breathers in a two-dimensional hexagonal Fermi–Pasta–Ulam lattice // J. Phys. A. Math. Gen. 2006. Vol. 40. P. 1239.

12. Feng B.F., Kawahara T. Discrete breathers in two-dimensional nonlinear lattices // Wave Motion. 2007. Vol. 45. P. 68.

13. Xu Q., Qiang T. Two-dimensional discrete gap breathers in a two-dimensional discrete diatomic Klein–Gordon lattice // Chin. Phys. Lett. 2009 Vol. 26. P. 070501.

14. Yi X., Wattis J.A.D., Susanto H., Cummings L.J. Discrete breathers in a two-dimensional spring-mass lattice // J. Phys. A. Math. Theor. 2009. Vol. 42. P. 355207.

15. Дмитриев С.В., Хадеева Л.З., Пшеничнюк А.И., Медведев Н.Н. Щелевые дискретные бризеры в двухкомпонентном трехмерном и двумерном кристаллах с межатомными потенциалами Морзе // Физика твердого тела. 2010. T. 52. C. 1398.

16. Koukouloyannis V., Kevrekidis P.G., Law K.J.H., Kourakis I., Frantzeskakis D.J. Existence and stability of multisite breathers in honeycomb and hexagonal lattices // J. Phys. A. Math. Theor. 2010. Vol. 43. P. 235101.

17. Сахненко В.П., Чечин Г.М. Симметрийные правила отбора в нелинейной динамике атомных систем // ДАН. 1993. Т. 330. С. 308.

18. Chechin G. M., Sakhnenko V. P. Interactions between normal modes in nonlinear dynamical systems with discrete symmetry. Exact results // Physica D.1998.Vol.117. P. 43.

19. Chechin G.M., Ryabov D.S., Sakhnenko V.P. Bushes of normal modes as exact excitations in nonlinear dynamical systems with discrete symmetry // Nonlinear phenomena research perspectives / Ed. by C. W. Wang. Nova Science Publishers, NY, 2007. P. 225.

20. Бокий Г.Б. Кристаллохимия. М.: Изд-во МГУ, 1960. 357 с.

21. Chechin G.M. Computers and group-theoretical methods for studying structural phase transitions // Comput. Math. Applic. 1989. Vol. 17. P. 255.

22. Rosenberg R.M. On nonlinear vibrations of systems with many degrees of freedom // Adv. Appl. Mech. 1966. Vol. 9. P. 155.

23. Chechin G.M., Dzhelauhova G.S., Mehonoshina E.A. Quasibreathers as a generalization of the concept of discrete breathers // Phys. Rev. E. 2006. Vol. 74. P. 36608.

24. Гончаров П.П., Джелаухова Г.С., Чечин Г.М. Дискретные бризеры в нелинейных моноатомных цепочках // Изв. вузов. Прикладная нелинейная динамика. 2007. Т. 6. C. 57.

25. Chechin G.M., Dzhelauhova G.S. Discrete breathers and nonlinear normal modes in monoatomic chains // Journal of Sound and Vibration. 2009. Vol. 322. P. 490.

26. Аврамов К.В., Михлин Ю.В. Нелинейная динамика упругих систем. Модели, методы, явления. Том 1. Ижевск: РХД, 2010. 704 с.

 

Status: 
одобрено к публикации
Short Text (PDF): 
Full Text (PDF): 

BibTeX

@article{Безуглова -IzvVUZ_AND-19-3-89,
author = { G. S. Bezuglova and P. P. Goncharov and Yu. V. Gurov and G М. Chechin},
title = {DISCRETE BREATHERS IN SCALAR DYNAMICAL MODELS ON THE PLANE SQUARE LATTICE},
year = {2011},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {19},number = {3},
url = {https://old-andjournal.sgu.ru/en/articles/discrete-breathers-in-scalar-dynamical-models-on-the-plane-square-lattice},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2011-19-3-89-103},pages = {89--103},issn = {0869-6632},
keywords = {nonlinear dynamics,lattice models,discrete breathers,invariant manifolds,group­theoretical methods.},
abstract = {All symmetry related invariant manifolds, admitting localized vibrations, for dynamical models on plane square lattice were found by group­theoretical methods. Discrete breathers were constructed on these manifolds for the model with homogeneous potentials of interparticle interactions and their stability was studied. Nontrivial breather solutions which are not nonlinear normal modes by Rosenberg have been revealed for the above model despite it admits space­time separation of dynamical variables. Discrete breathers of the same type were also found in the system of linear coupled Duffing oscillators situated in sites of square lattice. Our approach for studying discrete breathers can be spread to different two­ and three­dimensional space­periodic dynamical models. }}