EFFECTIVE CRITERIA FOR THE EXISTENCE OF HOMOCLINIC BIFURCATIONS IN DISSIPATIVE SYSTEMS
Cite this article as:
Леонов . А. EFFECTIVE CRITERIA FOR THE EXISTENCE OF HOMOCLINIC BIFURCATIONS IN DISSIPATIVE SYSTEMS. Izvestiya VUZ. Applied Nonlinear Dynamics, 2005, vol. 13, iss. 3, pp. 20-26. DOI: https://doi.org/10.18500/0869-6632-2005-13-3-20-26
The path bifurcation problem is formulated. The application of it for the classical result of F. Tricomi on the existence of homoclinic bifurcations in a dissipative pendulum system is discussed. The survey of results concerning to the solving of the path homoclinic bifurcation problems for Lorenz system is given.
1. Tricomi F. Integrazione di unequazione differenziale presentatasi in electrotechnica // Annali della Roma Scuola Normale Superiore de Pisa: Scienza Phys. e Mat. 1933. Vol. 2. P.1.
2. Андронов А.А., Витт А.А., Хайкин С.Э. Теория колебаний. М.: Наука, 1965.
3. Барбашин Е.А., Табуева В.А. Динамические системы с цилиндрическим фазовым пространством. М.: Наука, 1969.
4. Баутин Н.Н. Качественные исследования одного уравнения ФАП // Прикл. математика и механика. 1970. Т.34, No 5. С.850.
5. Белых В.Н., Некоркин В.И. Качественные исследования системы трех дифференциальных уравнений теории фазовой синхронизации // Прикл. математика и механика. 1975. Т.39, вып. 4. С. 642.
6. Белюстина Л.Н. Об одном уравнении из теории электрических машин // Сборник памяти А.А.Андронова. М.: Изд-во АН СССР, 1955. C.158.
7. Белюстина Л.Н. Исследование нелинейной системы ФАП // Изв. вузов. Радиофизика. 1959. Т.2, No 2. C.63.
8. Белюстина Л.Н. О полосе захвата и численном исследовании точечных отображений в некоторых задачах синхронизации // Динамика систем. Горький: ГГУ, 1976. No 11. C.18.
9. Белюстина Л.Н., Быков В.В., Кивелева К.Г., Шалфеев В.Д. О величине полосы захвата системы ФАПЧ с пропорционально-интегрирующим фильтром // Изв. вузов. Радиофизика. 1970. Т.13, No 4. C. 561.
10. Белюстина Л.Н., Белых В.Н. Качественное исследование динамической системы на цилиндре // Дифференц. уравнения. 1973. Т.9, No 3. С. 403.
11. Губарь Н.А. Исследование кусочно-линейных динамических систем с тремя параметрами // Прикл. математика и механика. 1961. Т.25, No 6. С.1011.
12. Amerio L. Studio asimptotika del moto un punto su una chiusa per azione diforze independenti dal tempo // Ann. R. Scuola Norm. sup. Piza, 1950. Vol. 3, No 3. P.17.
13. Amerio L. Determinazione della condizioni di stabilita per gli integrali di un’equazione interessante l’electrotecnica // Ann. di Matem. pura ed appl. 1949. Vol. 30, No 4. P.34.
14. Hayes W.D. On the equation for a damped pendulum under constant torque // Z. Ang. Math. Phys. 1953. Bd 4, No 5. S.398.
15. Zeifert G. On the existence of certain solutions of nonlinear differential equations // Z. Ang. Math. Phys. 1952. Bd 3, No 6. S.468.
16. Zeifert G. On stability questions for pendulum-like equations // Z. Ang. Math. Phys. 1956. Bd 7, No 3. S.238.
17. Шахгильдян В.В., Белюстина Л.Н. Системы фазовой синхронизации. М.: Радио и связь, 1982.
18. Шахгильдян В.В., Ляховкин А.А. Системы фазовой автоподстройки частоты. М.: Связь, 1972.
19. Янко-Триницкий А.А. Новый метод анализа работы синхронных двигателей при резкопеременных нагрузках. М.–Л.: Госэнергоиздат, 1958.
20. Гупта С. Фазовая автоподстройка частоты // Труды Инст-та инж. электротехн. и радиотехн. 1975. Т.63, No 2. С.50.
21. Stocker J.J. Nonlinear vibrations in mechanical and electrical systems. New York: Interscience, 1950.
22. Viterbi A.J. Principles of coherent communications. New York: McGraw-Hill, 1966.
23. Lindsey W.C. Sinchronization systems in communication and control. New York : Prentice-Hall, 1972.
24. Белых В.Н. О бифуркации сепаратрис седла системы Лоренца // Дифференциальные уравнения. 1984. Т.20, No 10. С.1666.
25. Leonov G.A., Reitman V. Attraktoreingrenzung fur nichtlineare systeme. Leipzig: Teubner, 1987.
26. Леонов Г.А. Об оценке параметров бифуркации петли сепаратрисы седла системы Лоренца // Дифференц. уравнения. 1988. Т.24, No 6. С.972.
27. Леонов Г.А. Об оценке бифуркационных значений параметров системы Лоренца // Успехи мат. наук. 1988. Т.43, No 3. С.189.
28. Леонов Г.А. О существовании гомоклинических траекторий в системе Лоренца // Вестн. СПб. ун-та. Математика, механика, астрономия. 1999, No 1. С.13.
29. Hastings S.P., Troy W.C. A shooting approach to chaos in the Lorenz equations // J. of Different. Equat. 1996. Vol. 127, No 1. P.41.
30. Chen X. Lorenz equations. Pt. 1. Existence and nonexistence of homoclinic orbits // SIAM J. Math. Analysis. 1966. Vol. 27, No 4. P.1057.
31. Леонов Г.А. Оценки аттракторов и существование гомоклинических орбит в системе Лоренца // Прикладная математика и механика. 2001. Т.65, вып. 1. С. 21.
32. Leonov G.A., Ponomarenko D.V., Smirnova V.B. Frequency-domain methods for nonlinear analysis. Theory and Applications. Singapore: World Scientific, 1996.
BibTeX
author = { Геннадий Алексеевич Леонов},
title = {EFFECTIVE CRITERIA FOR THE EXISTENCE OF HOMOCLINIC BIFURCATIONS IN DISSIPATIVE SYSTEMS},
year = {2005},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {13},number = {3},
url = {https://old-andjournal.sgu.ru/en/articles/effective-criteria-for-the-existence-of-homoclinic-bifurcations-in-dissipative-systems},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2005-13-3-20-26},pages = {20--26},issn = {0869-6632},
keywords = {-},
abstract = {The path bifurcation problem is formulated. The application of it for the classical result of F. Tricomi on the existence of homoclinic bifurcations in a dissipative pendulum system is discussed. The survey of results concerning to the solving of the path homoclinic bifurcation problems for Lorenz system is given. }}