GENERATION OF SLOW RHYTHMS AND SEQUENTIAL ACTIVITY IN ENSEMBLES OF NEURON-LIKE OSCILLATORS


Cite this article as:

Комаров М. А., Осипов Г. В. GENERATION OF SLOW RHYTHMS AND SEQUENTIAL ACTIVITY IN ENSEMBLES OF NEURON-LIKE OSCILLATORS. Izvestiya VUZ. Applied Nonlinear Dynamics, 2010, vol. 18, iss. 5, pp. 17-32. DOI: https://doi.org/10.18500/0869-6632-2010-18-5-17-32


Recent experimental and theoretical studies indicate that slow brain rhythms are generated by simple inhibitory neural networks. Sequential switching of tonic spiking activity is a widespread phenomenon underlying such rhythms. In this paper, we analyze a minimal, reciprocally connected circuit of three spiking units in the cases of different excitability classes of models. It is shown that in both types arising of stable heteroclic contour produces sequentail activation and slow rhythm generation in neural microcircuit. Bifurcation of heteroclinic contour arising is investigated.

DOI: 
10.18500/0869-6632-2010-18-5-17-32
Literature

1. Buzsaki G. Rhythms of the Brain. Oxford: Oxford University Press, 2006.

2. Rabinovich M.I., Varona P., Selverston A.I., and Abarbanel H.D.I. Dynamical principles in neuroscience // Rev. Mod. Phys. 2006. Vol. 78. 1213.

3. Hahnloser R.H.R., Kozhevnikov A.A., and Fee M.S. An ultra-sparse code underlies the generation of neural sequences in a songbird // Nature. London. 2002. Vol. 419. 65.

4. Mazor O. and Laurent G. Transient Dynamics versus fixed points in odor represen-tations by locust antennal lobe projection neurons // Neuron. 2005. Vol. 48. 661.

5. Huxter J., Burgess N., and O’Keefe J. Independent rate and temporal coding in hippocampal pyramidal cells // Nature. London. 2003. Vol. 425. 828.

6. Nowotny T. and Rabinovich M.I. Dynamical origin of independent spiking and bursting activity in neural microcircuits // Phys. Rev. Lett. 2007. Vol. 98. 128106.

7. Afraimovich V.S., Rabinovich M.I., and Varona P. Heteroclinic contours in neural ensembles and the winnerless competition principle // Int. J. Bifurcation Chaos. 2004. Vol. 14. 1195.

8. Afraimovich V.S., Zhigulin V.P., and Rabinovich M.I. On the origin of reproducible sequential activity in neural circuits // Chaos. 2004. Vol. 14. 1123.

9. Rabinovich M.I., Huerta R., Varona P., and Afraimovich V.S. Transient cognitive dynamics, metastability, and decision making // PLOS Comput. Biol. 2008. Vol. 4. e1000072.

10. Rabinovich M., Volkovskii A., Lecandra P., Huerta R., Abarbanel H.D.I., and Laurent G. Dynamical encoding by networks of competing neuron groups: Winnerless competition // Phys. Rev. Lett. 2001. Vol. 87. 068102.

11. Komarov M.A., Osipov G.V., and Suykens J.A.K. Sequentially activated groups in neural networks // Europhys. Lett. 2009. Vol. 86. 60006.

12. Bonhoeffer K.F. Modelle der nervenerregung // Naturwissenschaften. 1953. Vol. 40. P. 301.

13. Morris C. and Lecar H. Voltage oscillations in the barnacle giant muscle fiber // Biophys. J. 1981. Vol. 35. P. 193.

14. Jones L.M., Fontanini A., Sadacca B.F., Miller P., and Katz D.B. Natural stimuli evoke dynamic sequences of states in sensory cortical ensembles // Proc. Natl. Acad. Sci. U.S.A. 2007. Vol. 104. 18772.

15. Rabinovich M., Huerta R., and Laurent G. Transient dynamics for neural processing // Science. 2008. Vol. 321. 48.

Status: 
одобрено к публикации
Short Text (PDF): 
Full Text (PDF): 

BibTeX

@article{Комаров -IzvVUZ_AND-18-5-17,
author = {М. А. Komarov and G. V. Osipov },
title = {GENERATION OF SLOW RHYTHMS AND SEQUENTIAL ACTIVITY IN ENSEMBLES OF NEURON-LIKE OSCILLATORS},
year = {2010},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {18},number = {5},
url = {https://old-andjournal.sgu.ru/en/articles/generation-of-slow-rhythms-and-sequential-activity-in-ensembles-of-neuron-like-oscillators},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2010-18-5-17-32},pages = {17--32},issn = {0869-6632},
keywords = {Neurodynamics,seguential activity,heteroclinic contour},
abstract = {Recent experimental and theoretical studies indicate that slow brain rhythms are generated by simple inhibitory neural networks. Sequential switching of tonic spiking activity is a widespread phenomenon underlying such rhythms. In this paper, we analyze a minimal, reciprocally connected circuit of three spiking units in the cases of different excitability classes of models. It is shown that in both types arising of stable heteroclic contour produces sequentail activation and slow rhythm generation in neural microcircuit. Bifurcation of heteroclinic contour arising is investigated. }}