LOCALIZATION OF FLOWS IN A HORIZONTAL LAYER SUBJECT TO RANDOMLY INHOMOGENEOUS HEATING
Cite this article as:
Goldobin D. S. LOCALIZATION OF FLOWS IN A HORIZONTAL LAYER SUBJECT TO RANDOMLY INHOMOGENEOUS HEATING. Izvestiya VUZ. Applied Nonlinear Dynamics, 2007, vol. 15, iss. 2, pp. 29-39. DOI: https://doi.org/10.18500/0869-6632-2007-15-2-29-39
We study localization of thermo-convective flows in a shallow horizontal layer subject to a fixed thermal flux across the layer, and the effect of advection on the localization properties. The thermal flux applied is stationary in time and randomly inhomogeneous in space (the problem considered is 2-D; the mean flux is nearly critical). The interpretation of linear results is underpinned by numerical simulation of the original nonlinear problem. The results presented in the article are relevant for thermal convection in a porous medium as well as for natural convection and some other hydrodynamical systems.
1. Anderson P.W. Absence of diffusion in certain random lattices// Phys. Rev. 1958. Vol. 109. P. 1492.
2. Frohlich J., Spencer T. ̈ Absence of diffusion in the Anderson tight binding model for large disorder or low energy // Commun. Math. Phys. 1983. Vol. 88. P. 151.
3. Grempel D.R., Fishman Sh., Prange R.E. Localization in an incommensurable potential: an exactly solvable model // Phys. Rev. Lett. 1982. Vol. 49. P. 833.
4. Bourgain J., Wang W.-M. Anderson localization for time quasi-periodic random Schrodinger and wave equations // Commun. Math. Phys. 2004. Vol. 248. P. 429. ̈
5. Vlad M.O., Ross J., Schneider F.W. Long memory, fractal statistics, and Anderson localization for chemical waves and patterns with random propagation velocities // Phys. Rev. E. 1998. Vol. 57. P. 004003.
6. Hammele M., Schuler S., Zimmermann W. Effects of parametric disorder on a stationary bifurcation // Physica D. 2006. Vol. 218. P. 139.
7. Лифшиц И.М., Гредескул С.А., Пастур Л.А. Введение в теорию неупорядоченных систем. М.: Наука, 1982.
8. Гершуни Г.З., Жуховицкий Е.М. Конвективная устойчивость несжимаемой жидкости. М.: Наука, 1972.
9. Knobloch E. Pattern selection in long-wavelength convection // Physica D. 1990. Vol. 41. P. 450.
10. Аристов С.Н., Фрик П.Г. Крупномасштабная турбулентность в конвекции Рэлея – Бенара // Изв. АН СССР. Механика жидкости и газа. 1989. No 5. С. 43.
11. Кляцкин В.И. Статистическое описание динамических систем с флуктуирующими параметрами. М.: Наука, 1975.
12. Zillmer R., Pikovsky A. Continuous approach for the random-field Ising chain // Phys. Rev. E. 2005. Vol. 72. P. 056108.
BibTeX
author = {D. S. Goldobin},
title = {LOCALIZATION OF FLOWS IN A HORIZONTAL LAYER SUBJECT TO RANDOMLY INHOMOGENEOUS HEATING},
year = {2007},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {15},number = {2},
url = {https://old-andjournal.sgu.ru/en/articles/localization-of-flows-in-horizontal-layer-subject-to-randomly-inhomogeneous-heating},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2007-15-2-29-39},pages = {29--39},issn = {0869-6632},
keywords = {-},
abstract = {We study localization of thermo-convective flows in a shallow horizontal layer subject to a fixed thermal flux across the layer, and the effect of advection on the localization properties. The thermal flux applied is stationary in time and randomly inhomogeneous in space (the problem considered is 2-D; the mean flux is nearly critical). The interpretation of linear results is underpinned by numerical simulation of the original nonlinear problem. The results presented in the article are relevant for thermal convection in a porous medium as well as for natural convection and some other hydrodynamical systems. }}