LYAPUNOV EXPONENTS IN THE HENON–HEILES PROBLEM


Cite this article as:

Станкул Г. В., Личман В. А., Хаджи П. И. LYAPUNOV EXPONENTS IN THE HENON–HEILES PROBLEM. Izvestiya VUZ. Applied Nonlinear Dynamics, 2007, vol. 15, iss. 1, pp. 71-74. DOI: https://doi.org/10.18500/0869-6632-2007-15-1-71-74


By the way of combined integrating of the motion and variation equations we calculated the maximal characteristic Lyapunov exponents in the wide limits of energy and time for the Henon–Heiles problem. It follows from the fitting procedure that the best approximate function is the exponential one with the parameter values, which are different from the earlier obtained parameter values (Benettin et al.).

Key words: 
-
DOI: 
10.18500/0869-6632-2007-15-1-71-74
Literature

1. Henon М. and Heiles С. // Astron. J. 1964. Vol. 69. P. 73.

2. Лихтенберг А. и Либерман М. Регулярная и стохастическая динамика. М.: Мир, 1984.

3. Benettin G., Galgani L. and Strelcyn J.-M. // Phys. Rev. A. 1976. Vol. 14. P. 2338.

4. Shevchenko I.I. // Phys. Lett. A. 1998. Vol. 241. P. 53.

5. Шевченко И.И., Мельников А.В. // Письма в ЖЭТФ. 2003. Т. 77. С. 772.

6. Wolf A., Swift J., Swinney H.L. and Vastano J.A. // Physica D. 1985. Vol. 16. P. 285.

Status: 
одобрено к публикации
Short Text (PDF): 
Full Text (PDF): 

BibTeX

@article{Станкул-IzvVUZ_AND-15-1-71,
author = {G. V. Stancul and V. А. Lichman and P. I. Khadzhi},
title = {LYAPUNOV EXPONENTS IN THE HENON–HEILES PROBLEM},
year = {2007},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {15},number = {1},
url = {https://old-andjournal.sgu.ru/en/articles/lyapunov-exponents-in-the-henon-heiles-problem},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2007-15-1-71-74},pages = {71--74},issn = {0869-6632},
keywords = {-},
abstract = {By the way of combined integrating of the motion and variation equations we calculated the maximal characteristic Lyapunov exponents in the wide limits of energy and time for the Henon–Heiles problem. It follows from the fitting procedure that the best approximate function is the exponential one with the parameter values, which are different from the earlier obtained parameter values (Benettin et al.). }}