NUMERICAL CALCULATION OF THE ELECTRODYNAMIC CHARACTERISTICS OF THE DIODE OSCILLATOR WITH PHOTONIC CRYSTAL RESONATOR
Cite this article as:
Benedik А. I. NUMERICAL CALCULATION OF THE ELECTRODYNAMIC CHARACTERISTICS OF THE DIODE OSCILLATOR WITH PHOTONIC CRYSTAL RESONATOR. Izvestiya VUZ. Applied Nonlinear Dynamics, 2014, vol. 22, iss. 6, pp. 49-58. DOI: https://doi.org/10.18500/0869-6632-2014-22-6-49-58
Design of a diode oscillator with a fieldemission cathode placed in a photonic crystal (PC) resonator is described. Results of numerical calculation of basic electrodynamic parameters of the PC resonator are presented. The 3D electrodynamic simulation by using the modern software package HFSS shows that varying the design of the energy output allows control of the loaded Qfactor in a wide range. Selection of the optimal value of the loaded Qfactor provides rather high output power and efficiency for reasonable values of the fieldemission cathode current density.
1. Srivastava V. THz vacuum microelectronic devices // J. Phys.: Conf. Series. 2008. Vol. 114. No 1. 012015.
2. Ives R.L. Microfabrication of high-frequency vacuum electron devices // IEEE Trans. Plasma Sci. 2004. Vol. 32, No 3. P. 1277.
3. Booske J.H., Dobbs R.J., Joye C.D., Kory C.L., Neil G.R., Park G.S., Park J.H., Temkin R.J. Vacuum electronic high power terahertz sources // IEEE Trans. Terahertz Sci. Technol. 2011. Vol. 1, No 1. P. 54.
4. Sirigiri J.R., Kreischer K.E., Machuzak J., Mastovsky I., Shapiro M.A., Temkin R.J. Photonic-band-gap resonator gyrotron // Phys. Rev. Lett. 2001. Vol. 86, No 24. P. 5628.
5. Ashutosh, Jain P.K. Design and analysis of metallic photonic band gap cavity for a gyrotron // Journal of Microwaves, Optoelectronics and Electromagnetic Applications. 2012. Vol. 11, No 2. P. 242.
6. Singh A., Jain P.K. Multimode analysis and PIC simulation of a metal PBG cavity gyrotron oscillator // Progress in Electromagnetics Research M. 2014. Vol. 39. P. 11.
7. Joo Y.-D., Park G.-S., Kim D.-H., Kim J.-I., Jeon S.-G., Han S.-T., Jung S.-S., Kim J.-U. Design of a third-harmonic gyrotron oscillator using a photonic crystal cavity // Japanese Journal of Applied Physics. 2009. Vol. 48. 074502
8. Nanni E., Lewis S., Shapiro M., Temkin R. A high gain photonic band gap gyrotron amplifier // Proc. 14th IEEE International Vacuum Electronics Conference. 21–23 May 2013, Paris, France.
9. Han S.-T., Jeon S.-G., Shin Y.-M., Jang K.-H., So J.-K., Kim J.-H., Chang S.-S., Park G.-S. Experimental investigations on miniaturized high-frequency vacuum electron devices // IEEE Trans. Plasma Sci. 2005. Vol. 33, No 2. P. 679.
10. Jeon S.-G., Shin Y.-M., Jang K.-H., Han S.-T., So J.-K., Joo Y.-D., Park G.-S. High order mode formation of externally coupled hybrid photonic-band-gap cavity // Appl. Phys. Lett. 2007. Vol. 90, No 2. 021112.
11. Jang K.-H., Jeon S.-G., Kim J.-I., Won J.-H., So J.-K., Bak S.-H., Srivastava A., Jung S.-S., Park G.-S. High order mode oscillation in a terahertz photonic-band-gap multibeam reflex klystron // Appl. Phys. Lett. 2008. Vol. 93, No 21. 211104.
12. Liu X., Lei H., Yu T., Feng J., Liao F. Characteristics of terahertz slow-wave system with two-dimensional photonic band-gap structure // Optics Communications. 2008. Vol. 281, No 1. P. 102.
13. Gong Y., Yin H., Wei Y., Yue L., Deng M., Lu Zh., Xu X., Wang W., Liu P., Liao F. Study of traveling wave tube with folded-waveguide circuit shielded by photonic crystals // IEEE Trans. Electron Devices. 2010. Vol. 57. No 5. P. 1137.
14. Shapiro M.A., Brown W.J., Mastovsky I., Sirigiri J.R., Temkin R.J. 17 GHz photonic band gap cavity with improved input coupling // Phys. Rev. ST Accel. Beams. 2001. Vol. 4. 042001.
15. Smirnova E.I., Kesar A.S., Mastovsky I., Shapiro M.A., Temkin R.J. Demonstration of a 17-GHz, high-gradient accelerator with a photonic-band-gap structure // Phys. Rev. Lett. 2005. Vol. 95, No 7. 074801.
16. Han S.-T. A high-frequency monotron employing two-dimensional, dielectric photonic-crystal, diode resonator // 35th Int. Conf. Infrared Millim. Terahertz Waves (IRMMW-THz). Rome, Italy, 2010.
17. Han S.-T. Numerical study on radio-frequency field emission from carbon nanotube film in a photonic crystal diode resonator // J. Korean Phys. Soc. 2011. Vol. 59, No 1. P. 141.
18. Бенедик А.И. Численное моделирование генератора на основе диода с авто-эмиссионным катодом и фотонно-кристаллическим резонатором // Изв. вузов. Прикладная нелинейная динамика. 2012. Т. 20, No 2. С. 63.
19. Benedik A.I., Ryskin N.M., Han S.T. Theory and simulation of field emission diode oscillators // Phys. Plasmas. 2013. Vol. 20. No 8. 083117.
20. Johnson S.G., Joannopoulos J.D. Block-iterative frequency domain methods for Maxwell’s equations in a planewave basis // Optics Express. 2001. Vol. 8, No 3. P. 173.
21. Oskooi A.F., Roundy D., Ibanescu M., Bermel P., Joannopoulos J.D., Johnson S.G. MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method // Computer Physics Communications. 2010. Vol. 181. P. 687–702.
22. High Frequency Structure Simulator (HFSS) of ANSYS. [Online]. Available: http://www.ansoft.com/products/hf/hfss/
BibTeX
author = {А. I. Benedik},
title = {NUMERICAL CALCULATION OF THE ELECTRODYNAMIC CHARACTERISTICS OF THE DIODE OSCILLATOR WITH PHOTONIC CRYSTAL RESONATOR},
year = {2014},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {22},number = {6},
url = {https://old-andjournal.sgu.ru/en/articles/numerical-calculation-of-the-electrodynamic-characteristics-of-the-diode-oscillator-with},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2014-22-6-49-58},pages = {49--58},issn = {0869-6632},
keywords = {Vacuum microelectronics,photonic crystal resonator,diode oscillator,loabed Q-faktor.},
abstract = {Design of a diode oscillator with a fieldemission cathode placed in a photonic crystal (PC) resonator is described. Results of numerical calculation of basic electrodynamic parameters of the PC resonator are presented. The 3D electrodynamic simulation by using the modern software package HFSS shows that varying the design of the energy output allows control of the loaded Qfactor in a wide range. Selection of the optimal value of the loaded Qfactor provides rather high output power and efficiency for reasonable values of the fieldemission cathode current density. }}