Vacuum microelectronics

STUDY OF MINIATURIZED LOW-VOLTAGE BACKWARD-WAVE OSCILLATOR WITH A PLANAR SLOW-WAVE STRUCTURE

The development of the terahertz frequency range is one of the priority problems of modern vacuum microwave electronics. For increasing power and efficiency of such devices, it is favorable to use spatially developed slow-wave structures (SWSs) and electron beams with a large cross section. For miniaturization of vacuum-tube devices, reducing of the accelerating voltage becomes a problem of principal importance.

NUMERICAL CALCULATION OF THE ELECTRODYNAMIC CHARACTERISTICS OF THE DIODE OSCILLATOR WITH PHOTONIC CRYSTAL RESONATOR

Design of a diode oscillator with a field­emission cathode placed in a photonic crystal (PC) resonator is described. Results of numerical calculation of basic electrodynamic parameters of the PC resonator are presented. The 3D electrodynamic simulation by using the modern software package HFSS shows that varying the design of the energy output allows control of the loaded Q­factor in a wide range. Selection of the optimal value of the loaded Q­factor provides rather high output power and efficiency for reasonable values of the field­emission cathode current density.