ON MODELLING THE DYNAMICS OF COUPLED SELF-OSCILLATORS USING THE SIMPLEST PHASE MAPS


Cite this article as:

Kuznetsov A. P., Sataev I. R., Sedova Y. V., Turukina L. V. ON MODELLING THE DYNAMICS OF COUPLED SELF-OSCILLATORS USING THE SIMPLEST PHASE MAPS. Izvestiya VUZ. Applied Nonlinear Dynamics, 2012, vol. 20, iss. 2, pp. 112-137. DOI: https://doi.org/10.18500/0869-6632-2012-20-2-112-137


The problem of describing the dynamics of coupled self-oscillators using discrete time systems on the torus is considered. We discuss the methodology for constructing such maps as a simple formal models, as well as physically motivated systems. We discuss the differences between the cases of the dissipative and inertial coupling. Using the method of Lyapunov exponents charts we identify the areas of two- and three-frequency quasiperiodicity and chaos. Arrangement of the Arnold resonance web is investigated and compared for different model systems.

DOI: 
10.18500/0869-6632-2012-20-2-112-137
Literature

1. Пиковский А., Розенблюм М., Куртс Ю. Синхронизация. Фундаментальное нелинейное явление. М.: Техносфера, 2003. 496 с.

2. Ланда П.С. Автоколебания в системах с конечным числом степеней свободы. М.: Наука, 1980. 359 с.

3. Блехман И.И. Синхронизация в природе и технике. М.: Наука, 1981. 352 с.

4. Balanov A.G., Janson N.B., Postnov D.E., Sosnovtseva O. Synchronization: From simple to complex. Springer, 2009. 437 p.

5. Гукенхеймер Дж., Холмс П. Нелинейные колебания, динамические системы и бифуркации векторных полей. Москва–Ижевск: РХД, 2002. 508 с.

6. Kuramoto Y. Chemical oscillations, waves, and turbulence. (Springer Ser. Synergetics, vol.19.) Berlin: Springer, 1984. 156 p.

7. Гласс Л., Мэки М. От часов к хаосу: Ритмы жизни. М.: Мир, 1991. 248 с. [Glass L., MacKey M.C. From clocks to chaos: The rhythms of life. Princeton, NY: Princeton Univ. Press, 1988. 248 p.

8. Winfree A. The geometry of biological time. 2nd ed. New York: Springer, 2001. 777 p.

9. Анищенко В.С., Астахов В.В., Вадивасова Т.Е, Стрелкова Г.И. Синхронизация регулярных, хаотических и стохастических колебаний. Москва–Ижевск: Институт компьютерных исследований, 2008. 136 с.

10. Кузнецов А.П., Кузнецов С.П., Рыскин Н.М. Нелинейные колебания. М.: Физ-матлит, 2-е изд., 2005. 292 с.

11. Репин Б.Г., Дубинов А.Е. Исследование режимов фазировки трех виркаторов в рамках модели связанных осцилляторов ван дер Поля // Письма в ЖТФ. 2006. T. 76, Вып. 4. C. 99.

12. Kawahara T. Coupled Van der Pol oscillators – A model of excitatory and inhibitory neural interactions // Biological Cybernetics. 1980. Vol. 39, No 1. P. 37.

13. Crowley M.F, Epstein I.R. Experimental and theoretical studies of a coupled chemical oscillator: phase death, multistability and in-phase and out-of-phase entrainment //

J. Phys. Chem. 1989. Vol. 93, No 6. P. 2496.

14. Anishchenko V.S., Astakhov V.V., Neiman A.B., Vadivasova T.E., Schimansky-Geier L. Nonlinear Dynamics of Chaotic and Stochastic Systems. Tutorial and Modern Development. Springer, Berlin, Heidelberg, 2007. 460 p.

15. Anishchenko V.S. Dynamical Chaos – Models and Experiments. Appearance Routes and Structure of Chaos in Simple Dynamical Systems // World Scientific Series on Nonlinear Science. Series A. 1995. Vol. 8. 384 p.

16. Дмитриев А.С., Кислов В.Я. Стохастические колебания в радиофизике и электронике. М.: Наука, 1989. 280 с.

17. Madan R. Chua’s circuit: A paradigm for chaos. World Scientific, 1993. 1042 p.

18. Volkov E.I., Romanov V.A. Bifurcations in the system of two identical diffusively coupled Brusselators // Physica Scripta. 1995. Vol. 51, No 1. P. 19.

19. Шустер Г. Детерминированный хаос. М.: Мир, 1988. 253 с.

20. Кузнецов С.П. Динамический хаос. М.: Физматлит, 2006. 356 с.

21. Kim S., MacKay R.S., Guckenheimer J. Resonance regions for families of torus maps // Nonlinearity. 1989. Vol. 2, No 3. P. 391.

22. Baesens С., Guckenheimer J., Kim S. Simple resonance regions of torus diffeomor-phisms // Patterns and dynamics in reactive media, Springer. 1991. P. 1.

23. Baesens С., Guckenheimer J., Kim S., MacKay R.S. Three coupled oscillators: mode locking, global bifurcations and toroidal chaos // Physica D. 1991. Vol. 49. P. 387.

24. Anishchenko V., Astakhov S., Vadivasova T. Phase dynamics of two coupled oscillators under external periodic force // Europhys. Lett. 2009. Vol. 86. 30003.

25. Анищенко В.С., Астахов С.В., Вадивасова Т.Е., Феоктистов А.В. Численное и экспериментальное исследование внешней синхронизации двухчастотных колебаний // Нелинейная динамика. 2009. Т. 5, No 2. С. 237.

26. Кузнецов А.П, Сатаев И.Р., Тюрюкина Л.В. Синхронизация и многочастотные колебания в цепочке фазовых осцилляторов // Нелинейная динамика. 2010, T. 6, No 4. C.693.

27. Заславский Г.М. Физика хаоса в гамильтоновых системах. Москва–Ижевск: РХД, 2004. 288 с.

28. Морозов А.Д. Резонансы, циклы и хаос в квазиконсервативных системах. Ижевск: Институт компьютерных исследований, 2005. 424 с.

29. Vasylenko A., Maistrenko Yu., Hasler M. Modeling phase synchronization in systems of two and three coupled oscillators // Nonlinear Oscillations. 2004. Vol. 7, No 3. P. 301.

30. Maistrenko V., Vasylenko A., Maistrenko Y., Mosekilde E. Phase chaos and multistability in the discrete Kuramoto model // International Journal of Bifurcation and Chaos. 2010. Vol. 20, No 6. P. 1811.

31. Rand R.H., Holmes P.J. Bifurcation of periodic motions in two weakly coupled van der Pol oscillators // Int. J. Non-Linear Mechanics, 1980. Vol. 15. P. 387.

32. Ivanchenko M.V., Osipov G.V., Shalfeev V.D., Kurths J. Synchronization of two nonscalar-coupled limit-cycle oscillators // Physica D. 2004. Vol. 189, No 1–2. p.8.

33. Кузнецов А.П., Станкевич Н.В., Тюрюкина Л.В. Связанные осцилляторы ван дер Поля и ван дер Поля–Дуффинга: Фазовая динамика и компьютерное моделирование // Известия вузов. Прикладная нелинейная динамика. 2008. T. 16, No 4. C. 101.

34. Lee E., Cross. M.C. Pattern formation with trapped ions // Phys. Rev. Lett. 2011. Vol. 106. 143001.

35. Khibnik A.I., Braimanc Y., Kennedyd T.A.B., Wiesenfeldd K. Phase model analysis of two lasers with injected field // Physica D, 1998. Vol. 111, No 1–4. P. 295.

36. Maistrenko Y., Popovych O., Burylko O. Mechanism of Desynchronization in the Finite-Dimensional Kuramoto Model // Phys. Rev. Lett., 2004. Vol. 93, 084102.

37. Broer H., Simo C., Vitolo R. The Hopf-saddle-node bifurcation for fixed points of 3D-diffeomorphisms: The Arnol’d resonance web // Reprint from the Belgian Mathematical Society, 2008, p. 769–787.

38. Галкин О.Г. Фазовый захват для отображений тора типа Матье // Функциональный анализ и его приложения, 1993. T. 27, Вып. 1. C. 1.

39. Froeschle С., Lega E., Guzzo M. Analysis of the chaotic behavior of orbits diusing along the Arnold web // Celestial Mechanics and Dynamical Astronomy. 2006. Vol. 95, No 1–4. P. 141.

40. Guzzo M., Lega E., Froeschle С. First numerical evidence of global Arnold diffusion in quasi–integrable systems // arXiv:nlin/0407059.

 

Status: 
одобрено к публикации
Short Text (PDF): 

BibTeX

@article{Кузнецов-IzvVUZ_AND-20-2-112,
author = {A. P. Kuznetsov and I. R. Sataev and Yu. V. Sedova and L. V. Turukina},
title = {ON MODELLING THE DYNAMICS OF COUPLED SELF-OSCILLATORS USING THE SIMPLEST PHASE MAPS},
year = {2012},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {20},number = {2},
url = {https://old-andjournal.sgu.ru/en/articles/on-modelling-the-dynamics-of-coupled-self-oscillators-using-the-simplest-phase-maps},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2012-20-2-112-137},pages = {112--137},issn = {0869-6632},
keywords = {synchronization,quasi-periodical oscillations,phase maps.},
abstract = {The problem of describing the dynamics of coupled self-oscillators using discrete time systems on the torus is considered. We discuss the methodology for constructing such maps as a simple formal models, as well as physically motivated systems. We discuss the differences between the cases of the dissipative and inertial coupling. Using the method of Lyapunov exponents charts we identify the areas of two- and three-frequency quasiperiodicity and chaos. Arrangement of the Arnold resonance web is investigated and compared for different model systems. }}