ON THE PROBLEM OF COMPUTATION OF THE SPECTRUM OF SPATIAL LYAPUNOV EXPONENTS FOR THE SPATIALLY EXTENDED BEAM PLASMA SYSTEMS
Cite this article as:
Koronovskii A. A., Maksimenko V. А., Moskalenko О. I., Hramov A. E. ON THE PROBLEM OF COMPUTATION OF THE SPECTRUM OF SPATIAL LYAPUNOV EXPONENTS FOR THE SPATIALLY EXTENDED BEAM PLASMA SYSTEMS. Izvestiya VUZ. Applied Nonlinear Dynamics, 2011, vol. 19, iss. 2, pp. 158-174. DOI: https://doi.org/10.18500/0869-6632-2011-19-2-158-174
The behavior of the Pierce diode has been considered from the point of view of the spatial Lyapunov exponents. The method of calculation of the spectrum of the spatial Lyapunov exponents for the electron spatial extended systems has been proposed. The autonomous dynamics of the Pierce diode as well as the behavior of two unidirectionally coupled Pierce diodes when the generalized synchronization is taken place have been considered.
1. Трубецков Д.И., Храмов А.Е. Лекции по сверхвысокочастотной электронике для физиков. т. 2. М.: Физматлит, 2004.
2. Klinger T., Schroder C., Block D., Greiner F., Piel A., Bonhomme G., and Naulin V. Chaos control and taming of turbulence in plasma devices // Phys. Plasmas. 2001. Vol. 8, No 5. P. 1961.
3. Godfrey B.B. Oscillatory nonlinear electron flow in Pierce diode // Phys. Fluids. 1987. Vol. 30. P. 1553.
4. Kuhn S. and Ender A. Oscillatory nonlinear flow and coherent structures in Pierce–type diodes // J. Appl. Phys. 1990. Vol. 68. P. 732.
5. Thamilmaran K., Senthilkumar D.V., Venkatesan A., and Lakshmanan M. Experimental realization of strange nonchaotic attractors in a quasiperiodically forced electronic circuit // Phys. Rev. E. 2006. Vol. 74. 036205.
6. Karakasidis T.E., Fragkou A., and Liakopoulos A. System dynamics revealed by recurrence quantification analysis: Application to molecular dynamics simulations // Phys. Rev. E. 2007. Vol. 76, No 2. 021120.
7. Macek W.M. and Redaelli S. Estimation of the entropy of the solar wind flow // Phys. Rev. E. 2000. Vol. 62, No 5. 6496.
8. Porcher R. and Thomas G. Estimating Lyapunov exponents in biomedical time series // Phys. Rev. E. 2001. Vol. 64, No 1. 010902(R).
9. Dunki R.M. ̈ Largest Lyapunov-exponent estimation and selective prediction by means of simplex forecast algorithms // Phys. Rev. E. 2000. Vol. 62, No 5. 6505.
10. Kuznetsov S.P. and Trubetskov D.I. Chaos and hyperchaos in a backward-wave oscillator // Radiophysics and Quantum Electronics. 2004. Vol. 47, No 5,6. P. 341.
11. Kuznetsov S.P. Example of a physical system with a hyperbolic attractor of the Smale-Williams type // Phys. Rev. Lett. 2005. Vol. 95. 144101.
12. Pyragas K. Weak and strong synchronization of chaos // Phys. Rev. E. 1996. Vol. 54, No 5. R4508.
13. Hramov A.E. and Koronovskii A.A. Generalized synchronization: a modified system approach // Phys. Rev. E. 2005. Vol. 71, No 6. 067201.
14. Goldobin D.S. and Pikovsky A.S. Synchronization and desynchronization of self-sustained oscillators by common noise//Phys. Rev. E. 2005. Vol.71, No4. 045201(R).
15. Goldobin D.S. and Pikovsky A.S. Synchronization of self-sustained oscillators by common white noise // Physica A. 2005. Vol. 351. P. 126.
16. Hramov A.E., Koronovskii A.A., and Moskalenko O.I. Are generalized synchronization and noise-induced synchronization identical types of synchronous behavior of chaotic oscillators? // Phys. Lett. A. 2006. Vol. 354, No 5-6. P. 423.
17. Osipov G.V., Hu B., Zhou C.S., Ivanchenko M.V., and Kurths J. Three types of transitons to phase synchronization in coupled chaotic oscillators // Phys. Rev. Lett. 2003. Vol. 91, No 2. 024101.
18. Rosenblum M.G., Pikovsky A.S., and Kurths J. From phase to lag synchronization in coupled chaotic oscillators // Phys. Rev. Lett. 1997. Vol. 78, No 22. 4193.
19. Politi A., Ginelli F., Yanchuk S., and Maistrenko Yu. From synchronization to Lyapunov exponents and back // Physica D. 2006. Vol. 224. P. 90.
20. Hramov A.E., Koronovskii A.A., and Kurovskaya M.K. Two types of phase synchronization destruction // Phys. Rev. E. 2007. Vol. 75, No 3. 036205.
21. Hramov A.E., Koronovskii A.A., and Popov P.V. Incomplete noise-induced synchronization of spatially extended systems // Phys. Rev. E. 2008. Vol. 77, No 2. 036215.
22. Кузнецов С.П. Динамический хаос. Сер. «Современная теория колебаний и волн». М.: Физматлит, 2001.
23. Benettin G., Galgani L., Giorgilli A., and Strelcyn J.-M. Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems: A method for computing all of them. P. I. Theory. P. II. Numerical application // Meccanica Vol. 15.1980. P. 9.
24. Филатов Р.А., Калинин Ю.А., and Храмов А.Е. Исследование влияния положительных ионов на свч-генерацию в низковольтном виркаторе // Письма в ЖТФ. 2006. Vol. 32, No 11. P. 61.
25. Стародубов А.В., Короновский А.А., Храмов А.Е., Жарков Ю.Д., and Дмитриев Б.С. Исследование обобщенной синхронизации в системе двух связанных клистронных автогенераторов хаоса//Письма в ЖТФ. 2007. Vol. 33, No14. P. 58.
26. Dmitriev B.S., Hramov A.E., Koronovskii A.A., Starodubov A.V., Trubetskov D.I., and Zharkov Y.D. First experimental observation of generalized synchronization phenomena in microwave oscillators // Physical Review Letters. 2009. Vol. 102, No 7. 074101.
27. Nusinovich G.S., Vlasov A.N., and Antonsen T.M. Nonstationary phenomena in tapered gyro-backward-wave oscillators // Phys.Rev.Lett. 2001. Vol. 87, No 21. 218301.
28. Keefe L.R. Dynamics of perturbed wavetrain solutions to the ginzburg-landau equation // Stud. Appl. Math. 1985. Vol. 73. P. 91.
29. Короновский А.А., Ремпен И.С., and Храмов А.Е. Исследование неустойчивых периодических пространственно-временных состояний в распределённой автоколебательной системе со cверхкритическим током // Изв. РАН, сер. физич. 2003. Vol. 67, No 12. 1705.
30. Wolf A., Swift J., Swinney H.L., and Vastano J. Determining lyapunov exponents from a time series // Physica D. 1985. Vol. 16. 285.
31. Купцов П.В. Вычисление показателей ляпунова для распределенных систем: преимущества и недостатки численных методов // Известия вузов. ПНД. 2011. Vol. 18, No 5. C. 93.
32. Короновский А.А., Москаленко О.И., Фролов Н.С. and Храмов А.Е. К вопросу о спектре пространственных ляпуновских показателей нелинейной активной среды, описываемой комплексным уравнением Гинзбурга–Ландау // Письма в ЖТФ. 2010. Vol. 36, No 14. C. 19.
33. Короновский А.А., Трубецков Д.И., and Храмов А.Е. Методы нелинейной динамики и хаоса в задачах электроники сверхвысоких частот. т. 2. нестационарные и хаотические процессы. М.: Физматлит, 2009.
34. Трубецков Д.И. and Храмов А.Е. Лекции по сверхвысокочастотной электронике для физиков. Т. 1. М.: Физматлит, 2003.
35. Роуч. П. Вычислительная гидродинамика. М.: Мир, 1980.
36. Filatov R.A., Hramov A.E., and Koronovskii A.A. Chaotic synchronization in coupled spatially extended beam-plasma systems // Phys. Lett. A. 2006. Vol. 358. P. 301.
BibTeX
author = {A. A. Koronovskii and V. А. Maksimenko and О. I. Moskalenko and A. E. Hramov},
title = {ON THE PROBLEM OF COMPUTATION OF THE SPECTRUM OF SPATIAL LYAPUNOV EXPONENTS FOR THE SPATIALLY EXTENDED BEAM PLASMA SYSTEMS},
year = {2011},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {19},number = {2},
url = {https://old-andjournal.sgu.ru/en/articles/on-the-problem-of-computation-of-the-spectrum-of-spatial-lyapunov-exponents-for-the},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2011-19-2-158-174},pages = {158--174},issn = {0869-6632},
keywords = {Lyapunov exponents,Pierce diode,generalized synchronization,Chaotic oscillators,dynamical system.},
abstract = {The behavior of the Pierce diode has been considered from the point of view of the spatial Lyapunov exponents. The method of calculation of the spectrum of the spatial Lyapunov exponents for the electron spatial extended systems has been proposed. The autonomous dynamics of the Pierce diode as well as the behavior of two unidirectionally coupled Pierce diodes when the generalized synchronization is taken place have been considered. }}