PARAMETRIC INSTABILITY OF AUTOOSCILLATOR COUPLED WITH REMOTE LOAD II. Numerical simulation
Cite this article as:
Novozhilova Y. V., Sergeev А. S., Usacheva S. А. PARAMETRIC INSTABILITY OF AUTOOSCILLATOR COUPLED WITH REMOTE LOAD II. Numerical simulation. Izvestiya VUZ. Applied Nonlinear Dynamics, 2011, vol. 19, iss. 2, pp. 128-140. DOI: https://doi.org/10.18500/0869-6632-2011-19-2-128-140
At the autooscillator with small reflection from the remote load the mode stability relative to decay into two side satellites was studied by numerical simulation of characteristic equation. At arbitrary exceed over oscillation threshold the stability regions was founded in the space of system parameters. The results are in a good agree, from the one hand, with theory in the parameter space where characteristic equation can be solved analytically, from the other hand, with the results of numerical simulation of transient processes between modes.
1. Новожилова Ю.В. Параметрическая неустойчивость в генераторе с запаздывающим отражением от нагрузки. I. Теория // Изв. вузов. Прикладная нелинейная динамика. 2011. Т. 19, No 2. С. 112.
2. Новожилова Ю.В., Рыскин Н.М., Усачева С.А. Нестационарные процессы в генераторе с запаздывающим отражением от нагрузки // Журнал технической физики (направлено в печать)
BibTeX
author = {Yu. V. Novozhilova and А. S. Sergeev and S. А. Usacheva },
title = {PARAMETRIC INSTABILITY OF AUTOOSCILLATOR COUPLED WITH REMOTE LOAD II. Numerical simulation},
year = {2011},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {19},number = {2},
url = {https://old-andjournal.sgu.ru/en/articles/parametric-instability-of-autooscillator-coupled-with-remote-load-ii-numerical-simulation},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2011-19-2-128-140},pages = {128--140},issn = {0869-6632},
keywords = {Autooscillator operation at the load,delayed reflection,onefrequency modes stability.},
abstract = {At the autooscillator with small reflection from the remote load the mode stability relative to decay into two side satellites was studied by numerical simulation of characteristic equation. At arbitrary exceed over oscillation threshold the stability regions was founded in the space of system parameters. The results are in a good agree, from the one hand, with theory in the parameter space where characteristic equation can be solved analytically, from the other hand, with the results of numerical simulation of transient processes between modes. }}