PROPERTIES OF SYNCHRONIZATION IN THE SYSTEM OF NONIDENTICAL COUPLED VAN DER POL AND VAN DER POL – DUFFING OSCILLATORS. BROADBAND SYNCHRONIZATION
Cite this article as:
Kuznetsov A. P., Paksyutov V. I., Roman Y. P. PROPERTIES OF SYNCHRONIZATION IN THE SYSTEM OF NONIDENTICAL COUPLED VAN DER POL AND VAN DER POL – DUFFING OSCILLATORS. BROADBAND SYNCHRONIZATION. Izvestiya VUZ. Applied Nonlinear Dynamics, 2007, vol. 15, iss. 4, pp. 3-15. DOI: https://doi.org/10.18500/0869-6632-2007-15-4-3-15
The particular properties of dynamics are discussed for the dissipatively coupled van der Pol oscillators, nonidentical in values of parameters controlling the Hopf bifurcation. The opportunity of a special synchronization regime in an infinitively long band between oscillation death and quasiperiodicity areas is shown for such system. The features of the bifurcation picture are observed for different values of the control parameters and for the case of additional Duffing type nonlinearity. In discussion a comparison with closed equation analysis is made.
1. Пиковский А., Розенблюм М., Куртс Ю. Синхронизация: фундаментальное нелинейное явление. М.: Техносфера, 2003, 508 с.
2. Aronson D.G., Ermentrout G.B., Kopell N. Amplitude response of coupled oscillators // Physica D. 1990. Vol. 41. P. 403.
3. Rand R., Holmes P.J. Bifurcation of periodic motions in two weakly coupled van der Pol oscillators // Int. J. Non-Linear Mechanics. 1980. Vol. 15. P. 387.
4. Storti D.W., Rand R.H. Dynamics of two strongly coupled van der Pol oscillators // Int. J. Non-Linear Mechanics. 1982. Vol. 17(3). P. 143.
5. Chakraborty T., Rand R.H. The transition from phase locking to drift in a system of two weakly coupled van der Pol oscillators // Int. J. Non-Linear Mechanics. 1988. Vol. 23, No 5/6. P. 369.
6. Poliashenko M., McKay S.R., Smith C.W. Chaos and nonisochronism in weakly coupled nonlinear oscillators // Phys. Rev. A. 1991. Vol. 44. P. 3452.
7. Poliashenko M., McKay S.R., Smith C.W. Hysteresis of synchronous – asynchronous regimes in a system of two coupled oscillators // Phys. Rev. A. 1991. Vol. 43. P. 5638.
8. Pastor I., Perez-Garcia V.M., Encinas-Sanz F., Guerra J.M. Ordered and chaotic behavior of two coupled van der Pol oscillators // Phys. Rev. E. 1993. Vol. 48.P. 171.
9. Camacho E., Rand R.H., Howland H. Dynamics of two van der Pol oscillators coupled via a bath // Int. J. of Solids and Structures. 2004. Vol. 41. P. 2133.
10. Кузнецов А.П., Паксютов В.И. О динамике двух связанных осцилляторов ван дер Поля – Дуффинга с диссипативной связью // Изв. вузов. ПНД. 2003. Т. 11, No 6.
11. Кузнецов А.П., Паксютов В.И. Особенности устройства пространства параметров двух неидентичных связанных осцилляторов Ван дер Поля – Дуффинга // Изв. вузов. ПНД. 2005. Т. 13, No 4. С. 3.
12. Ivanchenko M.V., Osipov G.V., Shalfeev V.D., Kurths J. Synchronization of two nonscalar-coupled limit-cycle oscillators // Physica D. 2004. Vol. 189, No 1-2. P. 8.
13. Кузнецов А.П., Кузнецов С.П., Рыскин Н.М. Нелинейные колебания. Сер. Современная теория колебаний и волн. 2-е изд. М.: Физматлит, 2006.
14. Кузнецов С.П. Динамический хаос. Сер. Современная теория колебаний и волн. 2-е изд. перераб. и доп. М.: Физматлит, 2006, 356 с.
BibTeX
author = {A. P. Kuznetsov and V. I. Paksyutov and Yu. P. Roman },
title = {PROPERTIES OF SYNCHRONIZATION IN THE SYSTEM OF NONIDENTICAL COUPLED VAN DER POL AND VAN DER POL – DUFFING OSCILLATORS. BROADBAND SYNCHRONIZATION},
year = {2007},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {15},number = {4},
url = {https://old-andjournal.sgu.ru/en/articles/properties-of-synchronization-in-the-system-of-nonidentical-coupled-van-der-pol-and-van-der},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2007-15-4-3-15},pages = {3--15},issn = {0869-6632},
keywords = {-},
abstract = {The particular properties of dynamics are discussed for the dissipatively coupled van der Pol oscillators, nonidentical in values of parameters controlling the Hopf bifurcation. The opportunity of a special synchronization regime in an infinitively long band between oscillation death and quasiperiodicity areas is shown for such system. The features of the bifurcation picture are observed for different values of the control parameters and for the case of additional Duffing type nonlinearity. In discussion a comparison with closed equation analysis is made. }}