RADIAL PATTERNS IN A VIBRATED GRANULAR LAYER


Cite this article as:

Lazarevich I. А. RADIAL PATTERNS IN A VIBRATED GRANULAR LAYER. Izvestiya VUZ. Applied Nonlinear Dynamics, 2010, vol. 18, iss. 6, pp. 159-164. DOI: https://doi.org/10.18500/0869-6632-2010-18-6-159-164


Laboratory experiments were conducted for a sand layer placed in the vertically­oscillated containers of various shapes. Radial patterns on the sand surface were observed; experimental investigations of such structures have never been described in scientific literature. The waveform, amplitude and frequency of vibrations and the depth of the vibrated layer could be varied, allowing study the dependence of the shape and scale of radial structures upon these parameters.

DOI: 
10.18500/0869-6632-2010-18-6-159-164
Literature

1. Jaeger H.M., Nagel S.R., and Behringer R.P. Granular solids, liquids, and gases // Rev. Mod. Phys. 1996. Vol. 68. P. 1259.

2. Knight J.B., Jaeger H.M., and Nagel S.R. Vibration-induced size separation in granular media: The convection connection // Phys. Rev. Lett. 1993. Vol. 70. 3728.

3. Goldhirsh I. and Zanetti G. Clustering instability in dissipative gases // Phys. Rev. Lett. 1993. Vol. 70. 1619; Du Y., Hao L., and Kadanoff L.P. Recent numerical studies of a one dimensional system of inelastic particles // Phys. Rev. Lett. 1995. Vol. 74. 1268.

4. Umbanhowar P., Melo F., and Swinney H.L. Localized excitations in a vertically vibrated granular layer // Nature (London). 1996. Vol. 382. 793.

5. Bizon C., Shattuck M.D., Swift J.B., McCormick W.D., and Swinney H.L. Patterns in 3D vertically oscillated granular layers: Simulation and experiment // Phys. Rev. Lett. 1998. Vol. 80. P. 57.

6. Clement E. et al. Pattern formation in a vibrated two-dimensional granular layer // Phys. Rev. E. 1996, Vol. 53. 2972.

7. Shinbrot T. Competition between randomizing impacts and inelastic collisions in granular pattern formation // Nature (London). 1997. Vol. 389. 574.

8. Tsimring L.S. and Aranson I.S. Cellular and localized structures in a vibrated granular layer // Phys. Rev. Lett. 1997. Vol. 79. 213.

9. Crawford C. and Riecke H. Oscillon-type structures and their interaction in a Swift-Hohenberg model // Physica D. 1999. Vol. 129. P. 83.

10. Ristow G.H. and Herrmann H.J. Density patterns in two-dimensional hoppers // Phys. Rev. E. 1994. Vol. 50. R5.

11. Aoki K.M. and Akiyama T. Spontaneous wave pattern formation in vibrated granular materials // Phys. Rev. Lett. 1996. Vol. 77. 4166.

12. Rossing T.D. Chladni’s law for vibrating plates // American Journal of Physics. 1982. Vol. 50. P. 271.

Heading: 
Status: 
одобрено к публикации
Short Text (PDF): 
Full Text (PDF): 

BibTeX

@article{Лазаревич -IzvVUZ_AND-18-6-159,
author = {I. А. Lazarevich},
title = {RADIAL PATTERNS IN A VIBRATED GRANULAR LAYER},
year = {2010},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {18},number = {6},
url = {https://old-andjournal.sgu.ru/en/articles/radial-patterns-in-vibrated-granular-layer},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2010-18-6-159-164},pages = {159--164},issn = {0869-6632},
keywords = {Dynamic structures,granular matter,nonlinearity,vertical vibration,radial patterns.},
abstract = {Laboratory experiments were conducted for a sand layer placed in the vertically­oscillated containers of various shapes. Radial patterns on the sand surface were observed; experimental investigations of such structures have never been described in scientific literature. The waveform, amplitude and frequency of vibrations and the depth of the vibrated layer could be varied, allowing study the dependence of the shape and scale of radial structures upon these parameters. }}