RECONSTRUCTION OF COUPLING ARCHITECTURE AND PARAMETERS OF TIME-DELAYED OSCILLATORS IN ENSEMBLES FROM TIME SERIES
Cite this article as:
Sysoev I. V., Kulminsky D. D., Ponomarenko V. I., Prokhorov M. D. RECONSTRUCTION OF COUPLING ARCHITECTURE AND PARAMETERS OF TIME-DELAYED OSCILLATORS IN ENSEMBLES FROM TIME SERIES. Izvestiya VUZ. Applied Nonlinear Dynamics, 2016, vol. 24, iss. 3, pp. 21-37. DOI: https://doi.org/10.18500/0869-6632-2016-24-3-21-37
Purpose. To suggest a new approach to reconstruction of couping architecture and individual parameters of first-order time-delayed oscillators from experimental series of their oscillations.
Method. The method is based on minimization of target function, which characterizes a distance between points of nonlinear function of a current oscillator, which is to be reconstructed. Then estimated coupling coefficients are split into significant and insignificant. Minimization of target function is processed with least squares routine. Delay time is estimated as a trial delay corresponding to a minimum of target function over all trial delays.
Results. Efficiency of the proposed method was demonstrated in numerical experiment from time series of an ensemble of diffusively coupled nonidentical Mackey–Glass oscillators in presence of noise. Also a hardware experiment was considered in which resistively coupled generators with delay line were studied. The method demonstrated higher computational efficiency than previously suggested approaches due to use of not iterative algorithms for target function minimization and significant coefficient selection. Herewith estimates of coupling coefficients and inertance parameter are asymptotically unbiased.
Discussion. The proposed approach may be useful for reconstruction of parameters of elements and coupling architecture in systems of different nature: radioengineering, biological or others, which can be described using first-order time-delay equations
DOI: 10.18500/0869-6632-2016-24-3-21-37
Paper reference: Sysoev I.V., Kulminskiy D.D., Ponomarenko V.I., Prokhorov M.D. Reconstruction of coupling architecture and parameters of time-delayed oscillators in ensembles from time series. Izvestiya VUZ. Applied Nonlinear Dynamics. 2016. Vol. 24, Issue 3. P. 21–37.
1. Afraimovich V.S., Nekorkin V.I., Osipov G.V., Shalfeev V.D. Stability, Structures, and Chaos in Nonlinear Synchronization Networks. Singapore: World Scientific, 1995.
2. Pikovsky A., Rosenblum M., Kurths J. Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, United Kingdom, 2003.
3. Boccaletti S., Latora V., Moreno Y., Chavez M., Hwang D.U. // Phys. Rep. 2006. Vol. 424. P. 175.
4. Bezruchko B., Smirnov D. Extracting Knowledge From Time Series. Springer: Complexity, 2010.
5. Timme M. Revealing network connectivity from response dynamics // Phys. Rev. Lett. 2007. Vol. 98. 224101.
6. Smirnov D.A., Bezruchko B.P. Detection of couplings in ensembles of stochastic oscillators // Phys. Rev. E. 2009. Vol. 79. 046204.
7. Kaminski M., Ding M., Truccolo W.A., Bressler S.L. ́ Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance // Biol. Cybern. 2001. Vol. 85. P. 145.
8. Sysoev I.V., Sysoeva M.V. Detecting changes in coupling with Granger causality method from time series with fast transient processes // Physica D. 2015. Vol. 309. P. 9.
9. Liu H., Lu J.-A., Lu J., Hill D.J. ̈ Structure identification of uncertain general complex dynamical networks with time delay // Automatica. 2009. Vol. 45. P. 1799.
10. Xu Y., Zhou W., Fang J. Topology identification of the modified complex dynamical network with non-delayed and delayed coupling // Nonlinear Dynamics. 2012. Vol. 68. P. 195.
11. Yang X.L., Wei T. Revealing network topology and dynamical parameters in delay-coupled complex network subjected to random noise // Nonlinear Dynamics. 2015. Vol. 82. P. 319
12. Chen J., Lu J., Zhou J. Topology identification of complex networks from noisy time series using ROC curve analysis // Nonlinear Dynamics. 2014. Vol. 75. P. 761.
13. Zhang Z., Zheng Z., Niu H., Mi Y., Wu S., Hu G. Solving the inverse problem of noise-driven dynamic networks // Phys. Rev. E. 2015. Vol. 91. 012814.
14. Wens V. Investigating complex networks with inverse models: Analytical aspects of spatial leakage and connectivity estimation // Phys. Rev. E. 2015. Vol. 91. 012823.
15. Hale J.K., Lunel S.M.V. Introduction to Functional Differential Equations. New York: Springer, 1993.
16. Kuang Y. Delay Differential Equations with Applications in Population Dynamics. Boston: Academic Press, 1993.
17. Bocharov G.A., Rihan F.A. Numerical modelling in biosciences using delay differential equations // J. Comp. Appl. Math. 2000. Vol. 125. P. 183.
18. Mincheva M., Roussel M.R. Graph-theoretic methods for the analysis of chemical and biochemical networks. II. Oscillations in networks with delays // J. Math. Biol. 2007. Vol. 55. P. 87.
19. Heiligenthal S., Jungling T., D’Huys O., Arroyo-Almanza D.A., Soriano M.C., Fischer I., Kanter I., Kinzel W. Strong and weak chaos in networks of semiconductor lasers with time-delayed couplings // Phys. Rev. E. 2013. Vol. 88. 012902.
20. Wu X., Sun Z., Liang F., Yu C. Online estimation of unknown delays and parameters in uncertain time delayed dynamical complex networks via adaptive observer // Nonlinear Dynamics. 2013. Vol. 73. P. 1753.
21. Sysoev I.V., Prokhorov M.D., Ponomarenko V.I., Bezruchko B.P. // Tech. Phys. 2014. Vol. 59. P. 1434.
22. Ponomarenko V. I., Prokhorov M. D., Karavaev A. S., Bezruchko B. P. Recovery of parameters of delayed-feedback systems from chaotic time series // Journal of Experimental and Theoretical Physics. 2005. Vol. 100. Issue 3. P. 457.
23. Prokhorov M.D., Ponomarenko V.I. Estimation of coupling between time-delay systems from time series // Phys. Rev. E. 2005. Vol. 72. 016210.
24. Prokhorov M.D., Ponomarenko V.I. Reconstruction of time-delay systems using small impulsive disturbances // Phys. Rev. E. 2009. Vol. 80. 066206.
25. Mandel I.D. Cluster Analysis. Moscow: Finance and Statistics, 1988. 176 p. (in Russian).
26. Mackey M.C., Glass L. Oscillations and chaos in physiological control systems //Science. 1977. Vol. 197 P. 287.
BibTeX
author = {Ilya Vyacheslavovich Sysoev and D. D. Kulminsky and V. I. Ponomarenko and Mikhail Dmitrievich Prokhorov},
title = {RECONSTRUCTION OF COUPLING ARCHITECTURE AND PARAMETERS OF TIME-DELAYED OSCILLATORS IN ENSEMBLES FROM TIME SERIES},
year = {2016},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {24},number = {3},
url = {https://old-andjournal.sgu.ru/en/articles/reconstruction-of-coupling-architecture-and-parameters-of-time-delayed-oscillators-in},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2016-24-3-21-37},pages = {21--37},issn = {0869-6632},
keywords = {Time-series analyses,Reconstruction of equations,ensembles of oscillators,time- delayed systems},
abstract = {Purpose. To suggest a new approach to reconstruction of couping architecture and individual parameters of first-order time-delayed oscillators from experimental series of their oscillations. Method. The method is based on minimization of target function, which characterizes a distance between points of nonlinear function of a current oscillator, which is to be reconstructed. Then estimated coupling coefficients are split into significant and insignificant. Minimization of target function is processed with least squares routine. Delay time is estimated as a trial delay corresponding to a minimum of target function over all trial delays. Results. Efficiency of the proposed method was demonstrated in numerical experiment from time series of an ensemble of diffusively coupled nonidentical Mackey–Glass oscillators in presence of noise. Also a hardware experiment was considered in which resistively coupled generators with delay line were studied. The method demonstrated higher computational efficiency than previously suggested approaches due to use of not iterative algorithms for target function minimization and significant coefficient selection. Herewith estimates of coupling coefficients and inertance parameter are asymptotically unbiased. Discussion. The proposed approach may be useful for reconstruction of parameters of elements and coupling architecture in systems of different nature: radioengineering, biological or others, which can be described using first-order time-delay equations DOI: 10.18500/0869-6632-2016-24-3-21-37 Paper reference: Sysoev I.V., Kulminskiy D.D., Ponomarenko V.I., Prokhorov M.D. Reconstruction of coupling architecture and parameters of time-delayed oscillators in ensembles from time series. Izvestiya VUZ. Applied Nonlinear Dynamics. 2016. Vol. 24, Issue 3. P. 21–37. Download full version }}