SPECTRAL ANALYSIS OF OSCILLATIONS IN THE SYSTEM OF COUPLED CHAOTIC SELF-SUSTAINED OSCILLATORS
Cite this article as:
Vadivasova Т. Е., Zakharova А. S. SPECTRAL ANALYSIS OF OSCILLATIONS IN THE SYSTEM OF COUPLED CHAOTIC SELF-SUSTAINED OSCILLATORS. Izvestiya VUZ. Applied Nonlinear Dynamics, 2007, vol. 15, iss. 4, pp. 16-25. DOI: https://doi.org/10.18500/0869-6632-2007-15-4-16-25
Spectra of oscillations in the system of two coupled self-sustained chaotic oscillators are investigated in present work. The relation between spectra and partial effective phase diffusion coefficients is determined. We follow the evolution of spectra and diffusion coefficients from the asynchronous regime to the regime of synchronous chaos. The analogy between spectral characteristics of coupled chaotic oscillators and noisy coupled periodic oscillators is drawn.
1. Farmer J.D. Spectral broadening of period–dubling bifurcation sequences // Phys. Rev. Lett. 1981, Vol. 47. No 5. P. 179.
2. Пиковский А., Розенблюм М., Куртс Ю. Синхронизация. Фундаментальное нелинейное явление. М.: Техносфера, 2003.
3. Anishchenko V.S., Vadivasova T.E., Kurths J., Okrokvertskhov G.A., Strelkova G.I. Autocorrelation function and spectral linewidth of spiral chaos in a physical experiment// Phys. Rev. E. 2004. Vol. 69. P. 036215.
4. Anishchenko V.S., Okrokvertskhov G.A., Vadivasova T.E. Mixing and spectral-correlation properties of chaotic and stochastic systems: numerical and physical experiments // New Journal of Physics. 2005. Vol. 7. P. 76.
5. Анищенко В.С., Вадивасова Т.Е., Окрокверцхов Г.А., Стрелкова Г.И. Корреляционный анализ режимов детерминированного и зашумленного хаоса // Радиотехника и электроника. 2003. Т. 48, No 7. С. 824.
6. Вадивасова Т.Е., Анищенко В.С. Взаимосвязь частотных и фазовых характеристик хаоса. Два критерия синхронизации // Радиотехника и электроника. 2004. Т. 49, No 1. С. 77.
7. Anishchenko V.S., Vadivasova T.E., Kopeikin A.S., Kurths J., Strelkova G.I. Effect of noise on the relaxation to an invariant probability measure of nonhyperbolic chaotic attractors // Phys. Rew. Lett. 2001. Vol. 87, No 5. P. 4101.
8. Anishchenko V.S., Vadivasova T.E., Kopeikin A.S., Kurths J., Strelkova G.I. Peculiarities of the relaxation to an invariant probability measure of nonhyperbolic chaotic attractors in the presence of noise // Phys. Rev. E. 2002. Vol. 65, No 2. P. 036206.
9. Anishchenko V.S., Vadivasova T.E., Strelkova G.I., Okrokvertskhov G.A. Statistical properties of deterministic and noisy chaotic systems // Прикладная нелинейная динамика. 2003. Т. 11, No 3. С. 4.
10. Анищенко В.С., Астахов В.В., Вадивасова Т.Е., Нейман А.Б., Стрелкова Г.И., Шиманский-Гайер Л. Нелинейные эффекты в хаотических и стохастических системах. Москва – Ижевск: Институт компьютерных исследований, 2003.
11. Pikovsky A., Osipov G., Rosenblum M., Zaks M., Kurths J. Attractor – repelle collision and eyelet intermittency at the transition to phase synchronization // Phys. Rev. Lett. 1997. Vol.79. P. 47.
12. Rossler O.E. ̈ An equation for continuous chaos // Phys. Lett. A. 1976. Vol. 57. P. 397.
13. Стратонович Р.Л. Избранные вопросы теории флуктуаций в радиотехнике. М.: Сов. радио, 1961.
14. Малахов А.Н. Флуктуации в автоколебательных системах. М.: Наука, 1968.
15. Ланда П.С. Автоколебания в системах с конечным числом степеней свободы. М.: Наука, 1980.
BibTeX
author = {Т. Е. Vadivasova and А. S. Zakharova },
title = {SPECTRAL ANALYSIS OF OSCILLATIONS IN THE SYSTEM OF COUPLED CHAOTIC SELF-SUSTAINED OSCILLATORS},
year = {2007},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {15},number = {4},
url = {https://old-andjournal.sgu.ru/en/articles/spectral-analysis-of-oscillations-in-the-system-of-coupled-chaotic-self-sustained},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2007-15-4-16-25},pages = {16--25},issn = {0869-6632},
keywords = {-},
abstract = {Spectra of oscillations in the system of two coupled self-sustained chaotic oscillators are investigated in present work. The relation between spectra and partial effective phase diffusion coefficients is determined. We follow the evolution of spectra and diffusion coefficients from the asynchronous regime to the regime of synchronous chaos. The analogy between spectral characteristics of coupled chaotic oscillators and noisy coupled periodic oscillators is drawn. }}