STOCHASTIC EQUATIONS AND FOKKER–PLANCK EQUATION FOR THE ORDER PARAMETERS IN THE STUDY OF THE NOISE-INDUCED SPATIAL PATTERNS DYNAMICS


Cite this article as:

Kurushina S. Е., Gromova L. ., Maximov V. V. STOCHASTIC EQUATIONS AND FOKKER–PLANCK EQUATION FOR THE ORDER PARAMETERS IN THE STUDY OF THE NOISE-INDUCED SPATIAL PATTERNS DYNAMICS. Izvestiya VUZ. Applied Nonlinear Dynamics, 2011, vol. 19, iss. 5, pp. 45-67. DOI: https://doi.org/10.18500/0869-6632-2011-19-5-45-67


From the viewpoint of the order parameters concept spatial pattern formation in excitable fluctuating medium was researched analytically. The reaction–diffusion system in external noise was considered as a model of such medium. Stochastic equations for the unstable modes amplitudes (order parameters) and the dispersion equations for the average unstable modes amplitudes were received. Fokker–Planck equation for the order parameters was received. The developed theory allows studying noise–induced effects, including variation boundaries of ordering and disordering phase transitions in dependence on the parameters of external noise.

DOI: 
10.18500/0869-6632-2011-19-5-45-67
Literature

1. Lindner B., Garc ́ia-Ojalvo J., Neiman A., Schimansky-Geier L. Effects of noise in excitable systems // Physics Reports. 2004. Vol. 392. P. 321.

2. Garcia-Ojalvo J., Sancho J.M. Noise in spatially extended systems. New York: Springer Verlag, 1999.

3. Van den Broeck C., Parrondo J.M.R., Toral R. Noise–induced nonequilibrium phase transition // Phys. Rev. Lett. 1994. Vol. 73. P. 3395.

4. Genovese W., Mu ̃noz M.A., Sancho J.M. Nonequilibrium transitions induced by multiplicative noise // Phys. Rev. E. 1998. Vol. 57. P. R2495.

5. Landa P.S., Zaikin A.A., Schimansky-Geier L. Influence of additive noise on noise–induced phase transition on nonlinear chains // Chaos, Solitons & Fractals. 1998. Vol. 9. P. 1367.

6. Zaikin A.A., Schimansky-Geier L. Spatial patterns induced by additive noise // Phys. Rev. E. 1998. Vol. 58. P. 4355.

7. Iba ̃nes M., Garc ́ia-Ojalvo J., Toral R., Sancho J.M. Noise–induced phase separation: Mean-field results // Phys. Rev. E. 1999. Vol. 60. P. 3597.

8. Хакен Г. Синергетика. М.: Мир, 1980.

9. Курушина С.Е. Аналитическое исследование и численное моделирование контрастных диссипативных структур в поле флуктуаций динамических переменных // Изв. вузов. ПНД. 2009. Т. 17, No 6. С. 125.

10. Хорстхемке В., Лефевр Р. Индуцированные шумом переходы: теория и применение в физике, химии и биологии. М.: Мир, 1987.

11. Курушина С.Е. Моделирование динамики пространственно-распределенных систем типа «реакция–диффузия» с внешними флуктуациями. Дисс. ... докт. физ.-мат. наук. Самара, СГАУ, 2010.

12. Рытов С.М. Введение в статистическую радиофизику. М.: Наука, 1966.

13. Стратонович Р.Л. Нелинейная неравновесная термодинамика. М.: Наука, 1985.

14. Кляцкин В.И. Стохастические уравнения глазами физика. М.: Физматлит, 2001.

15. Стратонович Р.Л. Случайные процессы в динамических системах. Москва; Ижевск: ИКИ, 2009.

16. Scheffer M. Fish and nutrients interplay determines algal biomass: A minimal model // OIKOS. 1991. Vol. 62. P. 271.

17. Malchow H. Motional instabilities in prey–predator systems // J. Theor. Biol. 2000. Vol. 204. P. 639.

18. Malchow H. Spatiotemporal pattern formation in nonlinear non-equilibrium plankton dynamics // Procc. R. Soc. Lond. B. 1993. Vol. 251. P. 103.

19. Satnoianu R.A., Menzinger M. Non-turing stationary patterns in flow-distributed oscillators with general diffusion and flow rates // Phys. Rev. E. 2000. Vol. 62, No 1. P. 113.

20. Satnoianu R.A., Menzinger M., Maini P.K. Turing instabilities in general systems // J. Math. Biol. 2000. Vol. 41, No 6. P. 493.

21. Курушина С.Е., Завершинский И.П., Максимов В.В. и др. Моделирование пространственно-временных структур в системе хищник–жертва во внешней флуктуирующей среде // Математическое моделирование. 2010. Т. 22, No 10. С. 3.

22. Курушина С.Е., Иванов А.А. Диссипативные структуры в системе реакция–диффузия в поле мультипликативных флуктуаций // Изв. вузов. ПНД. 2010. Т. 18, No 3. С. 85.

 

Status: 
одобрено к публикации
Short Text (PDF): 
Full Text (PDF): 

BibTeX

@article{Курушина -IzvVUZ_AND-19-5-45,
author = {S. Е. Kurushina and L. I. Gromova and V. V. Maximov},
title = {STOCHASTIC EQUATIONS AND FOKKER–PLANCK EQUATION FOR THE ORDER PARAMETERS IN THE STUDY OF THE NOISE-INDUCED SPATIAL PATTERNS DYNAMICS},
year = {2011},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {19},number = {5},
url = {https://old-andjournal.sgu.ru/en/articles/stochastic-equations-and-fokker-planck-equation-for-the-order-parameters-in-the-study-of},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2011-19-5-45-67},pages = {45--67},issn = {0869-6632},
keywords = {Spatial patterns,external noise,phase transitions,order parameters.},
abstract = {From the viewpoint of the order parameters concept spatial pattern formation in excitable fluctuating medium was researched analytically. The reaction–diffusion system in external noise was considered as a model of such medium. Stochastic equations for the unstable modes amplitudes (order parameters) and the dispersion equations for the average unstable modes amplitudes were received. Fokker–Planck equation for the order parameters was received. The developed theory allows studying noise–induced effects, including variation boundaries of ordering and disordering phase transitions in dependence on the parameters of external noise. }}