SYNCHRONOUS OSCILLATIONS OF TWO POPULATIONS OF DIFFERENT SPECIES LINKED VIA INTERSPECIFIC INTERFERENCE COMPETITION
Cite this article as:
Mustafin A. T. SYNCHRONOUS OSCILLATIONS OF TWO POPULATIONS OF DIFFERENT SPECIES LINKED VIA INTERSPECIFIC INTERFERENCE COMPETITION. Izvestiya VUZ. Applied Nonlinear Dynamics, 2015, vol. 23, iss. 4, pp. 3-23. DOI: https://doi.org/10.18500/0869-6632-2015-23-4-3-23
A model for competition of two different species is considered. It is assumed that each consumer specializes on one resource only. The resource uptake rates are held constant.The basic feature of the model is that the dynamics of the resource is much slower than that of the consumer.The two consumers are coupled through direct reciprocal inhibition. Besides, self-limitation of the consumers due to overcrowding is also taken into account. The resources are noninteractive. When uncoupled, each population is completely nonoscillatory.The application of multiple-scale analysis yields that strong competition leads to bistability and hysteresis in the system, while weak coupling results in synchronous antiphase relaxation oscillations of the populations.
1. Balanov A., Janson N., Postnov D., Sosnovtseva O. Synchronization: From Simple to Complex / Springer Series in Synergetics. Berlin: Springer, 2009. 425 p.
2. Hoppensteadt F.C., Izhikevich E.M. Weakly Connected Neural Networks. New York: Springer, 1997. 400 p.
3. Pikovsky A., Rosenblum M., Kurths J. Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge, MA: Cambridge University Press, 2001. 411 p.
4. Strogatz S. Sync: The Emerging Science of Spontaneous Order. New York: Hyperion, 2003. 338 p.
5. Vandermeer J. // Bioscience. 2006. Vol. 56, № 12. P. 967.
6. Smale S. A mathematical model of two cells via Turing’s equation / Some Mathematical Questions in Biology V, ed. by Cowan J.D. Providence, RI: American Mathematical Society, 1974. P. 15. Vol. 6 of Lectures on Mathematics in the Life Sciences.
7. Loewenstein Y., Yarom Y., Sompolinsky H. // Proceedings of the National Academy of Sciences of the United States of America. 2001. Vol. 98, № 14. P. 8095.
8. Gomez-Marin A., Garcia-Ojalvo J., Sancho J.M. // Physical Review Letters. 2007. Vol. 98, № 16. Article ID 168303.
9. Szatmari I., Chua L.O. // International Journal of Circuit Theory and Applications. 2008. Vol. 36, № 5–6. P. 525.
10. Murdoch W.W., Briggs C.J., Nisbet R.M. Consumer-Resource Dynamics. Princeton, NJ: Princeton University Press, 2003. 462 p.
11. Murray J.D. Mathematical Biology: I. An Introduction. 3rd edition. New York: Springer, 2002. 553 p.
12. Carroll J.E. Rate Equations in Semiconductor Electronics. Cambridge; New York: Cambridge University Press, 1985. 177 p.
13. Zhang W.-B. Synergetic Economics: Time and Change in Nonlinear Economics. Berlin; New York: Springer, 1991. Vol. 53 of Springer Series in Synergetics. 246 p.
14. Volkenstein M.V. General Biophysics. New York: Academic Press, 1983. 314 p.
15. Chernavskii D.S., Palamarchuk E.K., Polezhaev A.A., Solyanik G.I., Burlakova E.B. // BioSystems. 1977. Vol. 9, № 4. P. 187.
16. MacArthur R. // Theoretical Population Biology. 1970. Vol. 1, № 1. P. 1.
17. Chesson P. // Theoretical Population Biology.1990. Vol. 37, № 1. P. 26.
18. Gause G.F., Witt A.A. // The American Naturalist. 1935. Vol. 69, № 725. P. 596.
19. Mirrahimi S., Perthame B., Wakano J.Y. // Journal of Mathematical Biology. 2014. Vol. 68, № 4. P. 931.
20. Devetter M., Seda J. // International Review of Hydrobiology. 2008. Vol. 93, № 1. P. 31.
21. Kirlinger G. // Mathematical Biosciences. 1986. Vol. 82, № 2. P. 165.
22. Bazykin A.D. Nonlinear Dynamics of Interacting Populations. Singapore; River Edge, NJ: World Scientific Publishing, 1998. Vol. 11 of World Scientific series on nonlinear science. Series A. 193 p.
23. Kuang Y., Fagan W.F., Loladze I. // Bulletin of Mathematical Biology. 2003. Vol. 65, № 3. P. 497.
24. Stewart F.M., Levin B.R. // The American Naturalist.1973. Vol. 107, № 954. P. 1718.
25. Herbert D., Elsworth R., Telling R.C. // Journal of General Microbiology. 1956. Vol. 14, № 3. P. 601.
26. Abrams P.A., Holt R.D. // Theoretical Population Biology. 2002. Vol. 62, № 3. P. 281.
27. Levine S. // The American Naturalist. 1976. Vol. 110, № 976. P. 903.
28. Lynch M. // Ecology. 1978. Vol. 59, № 3. P. 552.
29. Vandermeer J. // The American Naturalist. 1980. Vol. 116, № 3. P. 441.
30. Xiang Z., Song X. // Chaos, Solitons and Fractals. 2006. Vol. 29, № 5. P. 1121.
31. Hsu S., Hubbell S. // Mathematical Biosciences. 1979. Vol. 47, № 34. P. 143.
32. Tilman D. Resource Competition and Community Structure. Princeton, NJ: Princeton University Press, 1982. 296 p.
33. Verhulst F. Methods and Applications of Singular Perturbations: Boundary Layers and Multiple Timescale Dynamics. New York: Springer, 2005. 324 p.
34. Tikhonov A.N. // Matematicheskii Sbornik, 1952. Vol. 31(73), № 3. P. 575. (In Russian)
35. May R.M., Leonard W.J. // SIAM Journal on Applied Mathematics. 1975. Vol. 29, № 2. P. 243.
36. Vandermeer J. // Ecological Complexity. 2011. Vol. 8, № 1. P. 92.
37. Baer T. // Journal of the Optical Society of America B: Optical Physics. 1986. Vol. 3, № 9. P. 1175.
38. Erneux T., Glorieux P. Laser Dynamics. New York: Cambridge University Press, 2010. 361 p.
39. Amarasekare P. // Proceedings of the Royal Society of London B: Biological Sciences. 2003. Vol. 269, № 1509. P. 2541.
BibTeX
author = {A. T. Mustafin },
title = {SYNCHRONOUS OSCILLATIONS OF TWO POPULATIONS OF DIFFERENT SPECIES LINKED VIA INTERSPECIFIC INTERFERENCE COMPETITION},
year = {2015},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
volume = {23},number = {4},
url = {https://old-andjournal.sgu.ru/en/articles/synchronous-oscillations-of-two-populations-of-different-species-linked-via-interspecific},
address = {Саратов},
language = {russian},
doi = {10.18500/0869-6632-2015-23-4-3-23},pages = {3--23},issn = {0869-6632},
keywords = {Consumer-resource,predator-prey,competition,relaxation oscillations,synchronization.},
abstract = {A model for competition of two different species is considered. It is assumed that each consumer specializes on one resource only. The resource uptake rates are held constant.The basic feature of the model is that the dynamics of the resource is much slower than that of the consumer.The two consumers are coupled through direct reciprocal inhibition. Besides, self-limitation of the consumers due to overcrowding is also taken into account. The resources are noninteractive. When uncoupled, each population is completely nonoscillatory.The application of multiple-scale analysis yields that strong competition leads to bistability and hysteresis in the system, while weak coupling results in synchronous antiphase relaxation oscillations of the populations. Download full version }}